Author: Nagaoka, R.
Paper Title Page
MOPAB038 Robustness Studies and First Commissioning Simulations for the SOLEIL Upgrade Lattice 171
 
  • D. Amorim, A. Loulergue, L.S. Nadolski, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  Dif­frac­tion lim­ited light sources will use very strong fo­cus­ing el­e­ments to achieve their emit­tance goal. The beam will there­fore be more sen­si­tive to mag­net field and align­ment er­rors. Im­pact of er­rors on the lat­tice pro­posed for the SOLEIL up­grade was stud­ied with the Ac­cel­er­a­tor Tool­box (AT) code. The per­for­mance achieved with the im­per­fect lat­tice will be pre­sented. In par­tic­u­lar the ef­fect of gird­ers mis­align­ment was also ac­counted for. As the lat­tice uses a large num­ber of per­ma­nent mag­nets for the beam bend­ing as well as the fo­cus­ing, chal­lenges arise in terms of beam cor­rec­tion. The cor­rec­tors and BPMs lo­ca­tion and num­ber will be in­ves­ti­gated to max­i­mize their ef­fi­ciency, and cor­rec­tor mag­net strength re­quired to ob­tain a closed orbit will be stud­ied. The com­mis­sion­ing strat­egy, and in par­tic­u­lar the method used to achieve the first turns and a stored beam in the ma­chine will also be ex­posed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB038  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB068 Collective Effects Studies for the SOLEIL Upgrade 274
 
  • A. Gamelin, D. Amorim, P. Brunelle, W. Foosang, A. Loulergue, L.S. Nadolski, R. Nagaoka, R. Ollier, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  The SOLEIL up­grade pro­ject aims to re­place the ac­tual SOLEIL stor­age ring by a 4th gen­er­a­tion light source. The pro­ject has just fin­ished its con­cep­tual de­sign re­port (CDR) phase*. Com­pared to the SOLEIL stor­age ring, the up­graded stor­age ring de­sign in­cludes many new fea­tures of 4th gen­er­a­tion light sources that will im­pact col­lec­tive ef­fects, such as re­duced beam pipe aper­tures, a smaller mo­men­tum com­paction fac­tor and the pres­ence of har­monic cav­i­ties (HC). To mit­i­gate them, we rely on sev­eral damp­ing mech­a­nisms pro­vided by the syn­chro­tron ra­di­a­tion, the trans­verse feed­back sys­tem, and the HC (Lan­dau damp­ing and bunch length­en­ing). This ar­ti­cle pre­sents a first es­ti­mate of the col­lec­tive ef­fects im­pact of the up­graded de­sign.
* Conceptual Design Report: Synchrotron SOLEIL Upgrade, 2021, in press.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB068  
About • paper received ※ 17 May 2021       paper accepted ※ 02 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB070 mbtrack2, a Collective Effect Library in Python 282
 
  • A. Gamelin, W. Foosang, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  This ar­ti­cle in­tro­duces mb­track2, a col­lec­tive ef­fect li­brary writ­ten in python3. The idea be­hind mb­track2 is to build a co­her­ent ob­ject-ori­ented frame­work to work on col­lec­tive ef­fects in syn­chro­trons. mb­track2 is com­posed of dif­fer­ent mod­ules al­low­ing to eas­ily write scripts for sin­gle bunch or multi-bunch track­ing using MPI par­al­leliza­tion in a trans­par­ent way. The base of the track­ing model of mb­track2 is in­spired by mb­track, a C multi-bunch track­ing code ini­tially de­vel­oped at SOLEIL*. In ad­di­tion, many tools to pre­pare or analyse track­ing sim­u­la­tions are in­cluded.
* R. Nagaoka, R. Bartolini, and J. Rowland, Studies of Collective Effects in SOLEIL and Diamond Using the Multiparticle Tracking Codes SBTRACK and MBTRACK, in Proc. PAC’09, 2009.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB070  
About • paper received ※ 17 May 2021       paper accepted ※ 06 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB113 A Low-emittance Booster Lattice Design for the SOLEIL Upgrade 410
 
  • M.-A. Tordeux, A. Loulergue, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
  • Z.H. Bai, G. Liu, T. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  The SOLEIL stor­age ring up­grade will re­quire an in­jected beam with small trans­verse and lon­gi­tu­di­nal sizes. To meet this re­quire­ment, the pre­sent booster also needs to be up­graded, aim­ing to re­duce the emit­tance below 10 nm·rad. A multi-bend achro­mat lat­tice is de­signed in this con­text for the booster up­grade, which con­sists of two su­per­pe­ri­ods to re­spect the pre­sent race-track con­fig­u­ra­tion. The lat­tice is a 16BA HOA (Higher-Or­der Achro­mat) type lat­tice, com­posed of 14 unit cells, 2 match­ing cells and a long straight sec­tion, and com­bined-func­tion bend­ing mag­nets are used in the unit cells to both save space and re­duce the emit­tance. The nat­ural emit­tance of the de­signed booster is 5.2 nm·rad at the final en­ergy of 2.75 GeV. This paper pre­sents the gen­eral con­straints, lin­ear lat­tice de­sign and non­lin­ear dy­nam­ics op­ti­miza­tion for the booster up­grade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB113  
About • paper received ※ 19 May 2021       paper accepted ※ 28 May 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB248 Injection Schemes for the SOLEIL Upgrade 796
 
  • M.-A. Tordeux, P. Alexandre, R. Ben El Fekih, P. Brunelle, L. Hoummi, A. Loulergue, L.S. Nadolski, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
 
  In­jec­tion into the SOLEIL up­grade stor­age ring is much more chal­leng­ing com­pared to the case of the cur­rent ring. Thanks to the ex­pe­ri­ence gained in the de­vel­op­ment, man­u­fac­ture and com­mis­sion­ing of a Mul­ti­pole In­jec­tion Kicker (MIK) on the MAX IV 3 GeV stor­age ring, the SOLEIL pulsed mag­net team is cur­rently de­vel­op­ing new MIK mag­nets that will serve as the basis for the in­jec­tion schemes in the up­grade stor­age ring. We then pro­pose two kinds of in­jec­tions: firstly, a be­ta­tron off-axis in­jec­tion that should be com­pat­i­ble with the full-cou­pling stor­age ring tun­ing, and sec­ondly, a syn­chro­tron on-axis in­jec­tion by cre­at­ing a large hor­i­zon­tal dis­per­sion bump at the in­jec­tion point.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB248  
About • paper received ※ 19 May 2021       paper accepted ※ 21 May 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB054 CDR BASELINE LATTICE FOR THE UPGRADE OF SOLEIL 1485
 
  • A. Loulergue, D. Amorim, P. Brunelle, A. Gamelin, A. Nadji, L.S. Nadolski, R. Nagaoka, R. Ollier, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Pre­vi­ous MBA stud­ies con­verged to­ward a lat­tice com­posed of 20 7BA so­lu­tion elab­o­rated by adopt­ing the sex­tu­pole pair­ing scheme with dis­per­sion bumps orig­i­nally de­vel­oped at the ESRF-EBS. It pro­vided a low nat­ural hor­i­zon­tal emit­tance value of 70-80 pm-rad range at an en­ergy of 2.75 GeV. Due to dif­fi­cul­ties to ac­com­mo­date such lat­tice geom­e­try in the SOLEIL pre­sent tun­nel as well as to pre­serve at best the beam­line po­si­tion­ing, al­ter­na­tive lat­tice based on HOA (Higher-Or­der Achro­mat) type cell has been re­cently in­ves­ti­gated. The HOA type cell being more mod­u­lar and pos­si­bly ex­hibit­ing larger mo­men­tum ac­cep­tance as well as low emit­tances, a so­lu­tion al­ter­nat­ing 7BA and 4BA cells was then iden­ti­fied as the best to adapt the cur­rent beam­line po­si­tion­ing. The SOLEIL CDR up­grade ref­er­ence lat­tice is then com­posed of 20 HOA cells al­ter­nat­ing 7BA and 4BA giv­ing a nat­ural hor­i­zon­tal emit­tance of 80 pm-rad. The lin­ear and non-lin­ear beam dy­namic prop­er­ties of the lat­tice along with the pos­si­bil­ity of hor­i­zon­tal off-axis in­jec­tion at full be­ta­tron cou­pling are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB054  
About • paper received ※ 21 May 2021       paper accepted ※ 02 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB078 SOLEIL Update Status 3945
 
  • L.S. Nadolski, G. Abeillé, Y.-M. Abiven, F. Bouvet, P. Brunelle, A. Buteau, N. Béchu, I. Chado, M.-E. Couprie, X. Delétoille, A. Gamelin, C. Herbeaux, N. Hubert, J.-F. Lamarre, V. Leroux, A. Lestrade, A. Loulergue, P. Marchand, O. Marcouillé, A. Nadji, R. Nagaoka, S. Pierre-Joseph Zéphir, F. Ribeiro, G. Schagene, K. Tavakoli, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  SOLEIL is both a syn­chro­tron light source and a re­search lab­o­ra­tory at the cut­ting edge of ex­per­i­men­tal tech­niques ded­i­cated to mat­ter analy­sis down to the atomic scale, as well as a ser­vice plat­form open to all sci­en­tific and in­dus­trial com­mu­ni­ties. This French 2.75 GeV third gen­er­a­tion syn­chro­tron light source pro­vides today ex­tremely sta­ble pho­ton beams to 29 beam­lines (BLs) com­ple­men­tary to ESRF. We re­port fa­cil­ity per­for­mance, on­go­ing pro­jects and re­cent major achieve­ments. Major R&D areas will also be dis­cussed, and progress to­wards a lat­tice base­line for mak­ing SOLEIL a dif­frac­tion lim­ited stor­age ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB078  
About • paper received ※ 22 May 2021       paper accepted ※ 12 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)