Author: Campese, T.J.
Paper Title Page
MOPAB138 Dielectric Wakefield Acceleration with a Laser Injected Witness Beam 481
 
  • G. Andonian, T.J. Campese
    RadiaBeam, Santa Monica, California, USA
  • N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • D.S. Doran, G. Ha, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • W.J. Lynn, N. Majernik, J.B. Rosenzweig, V.S. Yu
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by DOE grant DE-SC0017690
The plasma pho­to­cath­ode con­cept, whereby a two-species gas mix­ture is used to gen­er­ate a beam -dri­ven ac­cel­er­at­ing wake­field and a laser-ion­ized gen­er­a­tion of a wit­ness beam, was re­cently ex­per­i­men­tally demon­strated. In a vari­a­tion of this con­cept, a beam-dri­ven di­elec­tric wake­field ac­cel­er­a­tor is em­ployed, filled with a neu­tral gas for laser-ion­iza­tion and cre­ation of a wit­ness beam. The di­elec­tric wake­fields, in the ter­a­hertz regime, pro­vide com­par­a­tively mod­est tim­ing re­quire­ments for the in­jec­tion phase of the wit­ness beam. In this paper, we pro­vide an up­date on the progress of the ex­per­i­men­tal re­al­iza­tion of the hy­brid di­elec­tric wake­field ac­cel­er­a­tor with laser in­jected wit­ness beam at the Ar­gonne Wake­field Ac­cel­er­a­tor (AWA), in­clud­ing en­gi­neer­ing con­sid­er­a­tions for gas de­liv­ery, and pre­lim­i­nary sim­u­la­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB138  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB139 High Resolution Imaging Design Using Permanent Magnet Quadrupoles at BNL UEM 485
 
  • G. Andonian, T.J. Campese, I.I. Gadjev, M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • M.G. Fedurin, K. Kusche, X. Yang, Y. Zhu
    BNL, Upton, New York, USA
  • C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Ul­tra­fast elec­tron mi­croscopy tech­niques have demon­strated the po­ten­tial to reach very high com­bined spa­tio-tem­po­ral res­o­lu­tion. In order to achieve high res­o­lu­tion, strong fo­cus­ing mag­nets must be used as the ob­jec­tive and pro­jec­tor lenses. In this paper, we dis­cuss the de­sign and de­vel­op­ment of a high-res­o­lu­tion ob­jec­tive lens for use in the BNL UEM. The ob­jec­tive lens is a quin­tu­plet array of per­ma­nent mag­net quadrupoles, which in sum, pro­vide sym­met­ric fo­cus­ing, high mag­ni­fi­ca­tion, and con­trol of higher order aber­ra­tion terms. The ap­pli­ca­tion and de­sign for a proof-of-con­cept ex­per­i­ment using a cal­i­brated slit for imag­ing are pre­sented. The image res­o­lu­tion is mon­i­tored as a func­tion of beam pa­ra­me­ters (en­ergy, en­ergy spread, charge, bunch length, spot size), and quin­tu­plet lens pa­ra­me­ters (drifts be­tween lenses).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB139  
About • paper received ※ 26 May 2021       paper accepted ※ 28 May 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB140 Gas Sheet Ionization Diagnostic for High Intensity Electron Beams 489
 
  • N.P. Norvell, G. Andonian, T.J. Campese, A.-L.M.S. Lamure, M. Ruelas, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • J.K. Penney
    UCLA, Los Angeles, California, USA
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by DOE grant DE-SC0019717
The char­ac­ter­i­za­tion of high in­ten­sity charged par­ti­cle beams in a min­i­mally in­ter­cep­tive, and non-de­struc­tive man­ner is per­formed using an ion­iza­tion di­ag­nos­tic. In this ap­pli­ca­tion, a neu­tral gas is tai­lored into a thin sheet, or cur­tain-like, dis­tri­b­u­tion at the in­ter­ac­tion point with an elec­tron beam. The elec­tron beam ion­izes the neu­tral gas in lo­cal­ized space, leav­ing a foot­print of the beam trans­verse dis­tri­b­u­tion. The ion cloud is sub­se­qe­untly im­aged with a se­ries of elec­tro­sta­tic lenses to a de­tec­tor plane. The re­sul­tant image is used in a re­con­struc­tion al­go­rithm to re­con­struct the beam pro­file at the in­ter­ac­tion point. In this paper, we pre­sent progress on the de­vel­op­ment of this di­ag­nos­tic for the char­ac­ter­i­za­tion of high charge, 10GeV elec­tron beams with small trans­verse dis­tri­b­u­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB140  
About • paper received ※ 20 May 2021       paper accepted ※ 10 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB230 Design of Split Permanent Magnet Quadrupoles for Small Aperture Implementation 4247
 
  • I.I. Gadjev, G. Andonian, T.J. Campese, M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Per­ma­nent mag­net quadrupoles are ideal for strong fo­cus­ing in com­pact foot­prints. Re­cent re­search in the use of per­ma­nent mag­net based quadru­pole mag­nets has en­abled very high-gra­di­ent uses ap­proach­ing 800T/m in final focus sys­tems. How­ever, in order to achieve high qual­ity field pro­files with strong fields, small di­am­e­ter bore mag­nets must be used ne­ces­si­tat­ing in vac­uum op­er­a­tion, or very small beampipes. For small beampipe geom­e­try, we have de­vel­oped a hy­brid-per­ma­nent mag­net quadru­pole, with steel and per­ma­nent mag­net wedges, that is able to main­tain high qual­ity fields but also read­ily machin­able in a sep­a­ra­ble de­sign. The split de­sign al­lows for ac­cu­rate and re­pro­ducible re­con­fig­u­ra­tion on a beam pipe. In this paper, we will dis­cuss the de­sign, en­gi­neer­ing, fab­ri­ca­tion and first mea­sure­ments of the split per­ma­nent mag­net quadru­pole.  
poster icon Poster THPAB230 [1.605 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB230  
About • paper received ※ 15 May 2021       paper accepted ※ 08 July 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)