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The Australian Synchrotron Facility
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BRIGHT program/Phase 2 development

 Bright beamlines

 7 new beamlines over the next 3-5 years
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Future proofing

 Requirements for BRIGHT and next gen facility

 Meet demands in medical and material 

 New beamlines to be installed

 The current configuration is insufficient for the future 

requirements/development
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Insufficiencies in the current kicker configuration

 Not compact

 Takes up 4 meters of space where a IVU will be installed

 Not transparent during top up

 Impact on Far-IR beamline

 Jitter
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σy = 14.5 px σy = 16.6 px

Ref Aiba 2015



The solution: a nonlinear kicker (NLK)

What is an NLK?

 A single kicker that produces a nonlinear field to kick the injected beam 

while leaving the stored beam untouched
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Ref Dressler 2011

Ref Aiba 2015



The solution: a nonlinear kicker (NLK)

 Solves our BRIGHT problems

 Stored beam is untouched

› Stable jitter-free beam that is transparent in top-up

 Compact and frees up precious real estate:

› NLK = 0.330 m of space

› Current 4 kicker configuration: 4 m

 Transparent to beamlines

› More frequent injections

› Improve photon intensity stability
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Ref Dressler 2011



Preliminary NLK design

 Conductor layout and magnetic field profile without any 

conductive coating
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Challenges other facilities have encountered

 Injection efficiency

 ~99% theoretically but ~80%-90% when installed

 Ceramic chamber design:

 Image currents induced on ceramic chamber

 Stored beam passing through ceramic chamber induces impedance and 

heat load 

 Charge accumulation across ceramic

 Needs a sufficient conductive coating to avoid
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The complex trade-off in design variables

 Interplay of factors will impact the design and performance

 Need to characterize and optimize many features (both physically and 
logistically)

› Conductive coating conductivity (Titanium or Titanium Nitride)

› Conductive coating thickness (1 µm to 10 µm)

› Aperture of ceramic chamber

› Ceramic chamber thickness

› Magnetic field response (sufficient kick of beam without gradation) 

› Copper conductor positions

› Length of NLK 

 Essentially a multi-objective optimization problem
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The impact of conductive coatings

 Conductive coating inside chamber needs to:
 Decrease beam impedance

 Decrease charge accumulation across ceramic

 Guide the image currents

 Coating impacts power deposition, heating, injection efficiency etc.

 Interplay of factors will determine optimal coating. For example a thin 
film coating provides: 
 Small field distortion 

 Larger power deposition 

 Larger thermal load 
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Design variables
 Wake impedance relationship with:

 Stored beam (bunch length, current)

 Conductive coating
› Titanium or Titanium Nitride?

› Coating thickness: 1 µm to 10 µm?

 Magnetic field response  
 Optimal Copper conductor positions to produce sufficient kick of beam without 

gradation across injected beam or perturbation of stored beam

 Field Distortion from conductive coating

 Heat load from stored beam image currents
 Aperture and length of ceramic chamber

 Power deposition from stored beam
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Design variables
 Wake impedance relationship with:

 Stored beam (bunch length, current)

 Conductive coating
› Titanium or Titanium Nitride?

› Coating thickness: 1 µm to 10 µm?

 Magnetic field response  
 Optimal Copper conductor positions to produce sufficient kick of beam without 

gradation across injected beam or perturbation of stored beam

 Field Distortion from conductive coating

 Heat load from stored beam image currents
 Changes with aperture and length of ceramic chamber

 Power deposition from stored beam
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Results

1. Conductive coating and impedance

2. Field Distortion

3. Power deposition and heat load

4. Injection simulations for nominal design
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 Longitudinal loss factor calculated using CST

 Note, some CST meshing issues

 Thin film of very small magnitude millions of cells in CST

 k║ = 0.1 V/pC for the NLK design with 2 µm Ti coating

 Reasonable value

Wake potential and loss for the NLK chamber
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 ImpedanceWake2D calculations to determine longitudinal and 

transverse impedances for various Ti and TiN thicknesses.

Impedance
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 For our beam parameters:

 3 µm coating will act like

bulk Ti due to skin depth.

 Rules out 4-10 µm Ti or TiN

coating as candidates

 Turn to field, power and 

heat considerations to 

decide between 1-3 µm 

Ti/TiN

Effective Impedance
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Results

1. Conductive coating and impedance

2. Field Distortion

3. Power deposition and heat load

4. Injection simulations for nominal design
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 Assuming: 

 100 ns bunch train

 Storage ring (SR) revolution = 720.47 ns

 Kicker maximum rise time = 620.47 ns

 Flat top of 100 ns

 Maximum fall time of 620 ns

 Delay:

 1 µm Ti: 45 ns

 2 µm Ti: 95 ns

 3 µm Ti: 135 ns

 Attenuation:

 1 µm Ti: 1.2 %

 2 µm Ti: 4.6 %

 3 µm Ti: 9.1 %

Field Distortion
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Results
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Power Deposition
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Power Deposition
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 For extreme operating conditions: 400 mA, 260 bunches:

 2 µm:

› Power: Ti = 312.9 W/m2; TiN = 256.3 W/m2

› Max Temp: Ti = 87.7°C; TiN = 76.4°C

 3 µm:

› Power: Ti = 208.6 W/m2; TiN = 170.9 W/m2

› Max Temp: Ti = 66.9°C; TiN = 59.3°C

Thermal Analysis
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Results

1. Conductive coating and impedance

2. Field Distortion

3. Power deposition and heat load

4. Injection simulations for nominal design
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Injection efficiencies and simulations

 Tracking in Sector 5 for 1 mrad kick
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Conclusion

 The Australian Synchrotron is looking toward our new BRIGHT 

beamline requirements (next 5 years) and next gen facility 

requirements (next 10-15 years)

 A nonlinear injection kicker is optimally positioned to provide the 

required space, transparency and functionality in our mission to 

provide cutting edge facilities to our user base

We have highlighted the multiple (sometimes oppositional) design 

considerations for the NLK design for the A.S.
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Future work

 Refine the CST model

 Check if we have formed any cavities/resonant modes with our 

design with a IVU installed in same sector downstream

 Next steps: prototype development and commissioning

 Prototype construction late 2019
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