

Nonlinear injection kicker prototype for installation at the Australian Synchrotron

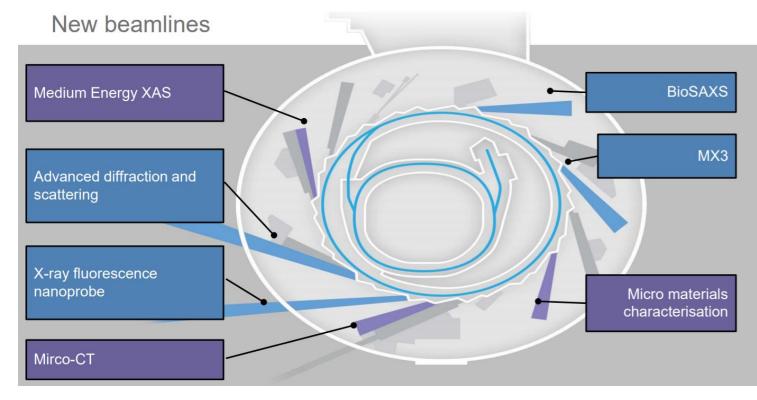
Beam Dynamics, Injection and Impedance Studies

Dr. Rebecca Auchettl, Dr. Rohan Dowd, Mr. Eugene Tan

Australian Synchrotron

rebeccaa@ansto.gov.au

Science. Ingenuity. Sustainability.

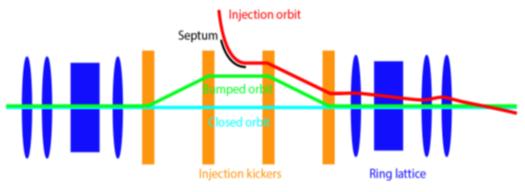

The Australian Synchrotron Facility

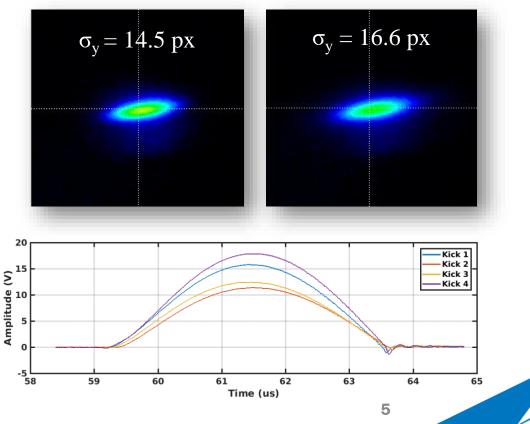
BRIGHT program/Phase 2 development

Bright beamlines

7 new beamlines over the next 3-5 years

Future proofing

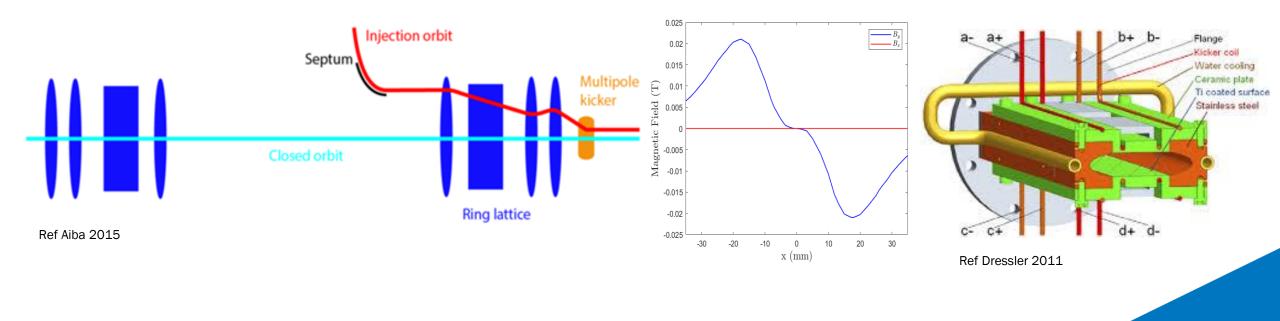

- Requirements for BRIGHT and next gen facility
 - Meet demands in medical and material
 - New beamlines to be installed
- The current configuration is insufficient for the future requirements/development



Insufficiencies in the current kicker configuration

Not compact

- Takes up 4 meters of space where a IVU will be installed
- Not transparent during top up
 - Impact on Far-IR beamline
- Jitter



The solution: a nonlinear kicker (NLK)

What is an NLK?

A single kicker that produces a nonlinear field to kick the injected beam while leaving the stored beam untouched

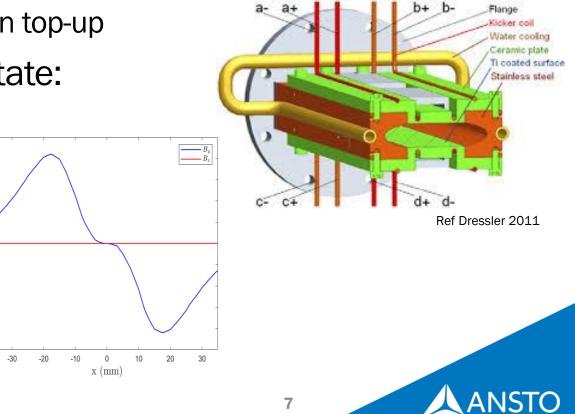
The solution: a nonlinear kicker (NLK)

- Solves our BRIGHT problems
 - Stored beam is untouched
 - > Stable jitter-free beam that is transparent in top-up

0.025

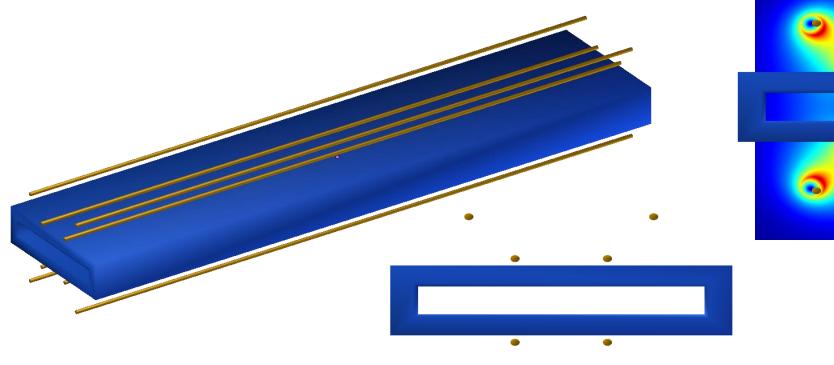
0.015

0.005

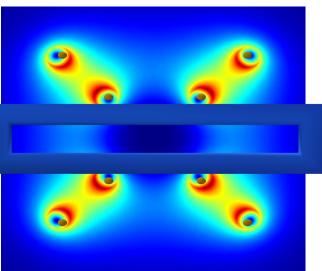

-0.015 -0.02

(H 0.0

tic Field


-0.005 -0.01

- Compact and frees up precious real estate:
 - > NLK = <u>0.330 m</u> of space
 - > Current 4 kicker configuration: <u>4 m</u>
- Transparent to beamlines
 - More frequent injections
 - > Improve photon intensity stability



Preliminary NLK design

 Conductor layout and magnetic field profile without any conductive coating

Challenges other facilities have encountered

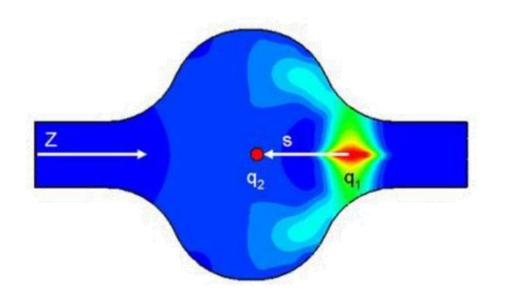
- Injection efficiency
 - ~99% theoretically but ~80%-90% when installed
- Ceramic chamber design:
 - Image currents induced on ceramic chamber
 - Stored beam passing through ceramic chamber induces impedance and heat load
 - Charge accumulation across ceramic
 - Needs a sufficient conductive coating to avoid

The complex trade-off in design variables

- Interplay of factors will impact the design and performance
- Need to characterize and optimize many features (both physically and logistically)
 - > Conductive coating conductivity (Titanium or Titanium Nitride)
 - > Conductive coating thickness (1 μ m to 10 μ m)
 - > Aperture of ceramic chamber
 - > Ceramic chamber thickness
 - > Magnetic field response (sufficient kick of beam without gradation)
 - Copper conductor positions
 - > Length of NLK
- Essentially a multi-objective optimization problem

10

The impact of conductive coatings

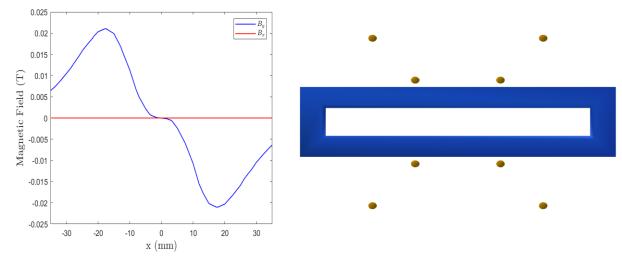

- Conductive coating inside chamber needs to:
 - Decrease beam impedance
 - Decrease charge accumulation across ceramic
 - Guide the image currents
- Coating impacts power deposition, heating, injection efficiency etc.
- Interplay of factors will determine optimal coating. For example a thin film coating provides:
 - Small field distortion
 - Larger power deposition
 - Larger thermal load

Design variables

- Wake impedance relationship with:
 - Stored beam (bunch length, current)
 - Conductive coating
 - > Titanium or Titanium Nitride?
 - $\,>\,$ Coating thickness: 1 μm to 10 $\mu m?$

Magnetic field response

- Optimal Copper conductor positions to produce sufficient kick of beam without gradation across injected beam or perturbation of stored beam
- Field Distortion from conductive coating
- Heat load from stored beam image currents
 - Aperture and length of ceramic chamber
 - Power deposition from stored beam


Design variables

- Wake impedance relationship with:
 - Stored beam (bunch length, current)
 - Conductive coating
 - > Titanium or Titanium Nitride?
 - $\,$ > Coating thickness: 1 μm to 10 $\mu m?$

Field response

- Optimal Copper conductor positions to produce sufficient kick of beam without gradation across injected beam or perturbation of stored beam
- Field Distortion from conductive coating
- Heat load from stored beam image currents
 - Aperture and length of ceramic chamber
 - Power deposition from stored beam

Design variables

- Wake impedance relationship with:
 - Stored beam (bunch length, current)
 - Conductive coating
 - > Titanium or Titanium Nitride?
 - $\,$ > Coating thickness: 1 μm to 10 $\mu m?$
- Magnetic field response
 - Optimal Copper conductor positions to produce sufficient kill of beam will gradation across injected beam or perturbation of stored beam
 - Field Distortion from conductive coating
- Heat load from stored beam image currents
 - Changes with aperture and length of ceramic chamber
 - Power deposition from stored beam

323.7

323.68

323.66

323.64

323.62

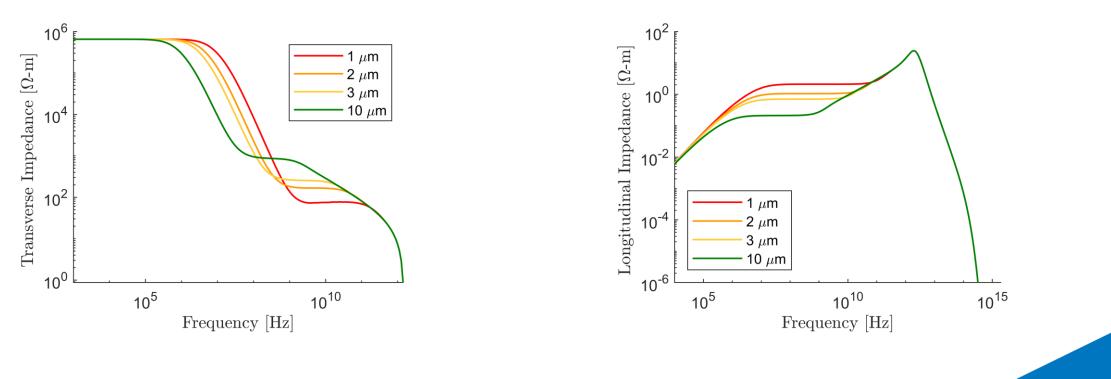
323.56

Results

- 1. Conductive coating and impedance
- 2. Field Distortion
- 3. Power deposition and heat load
- 4. Injection simulations for nominal design

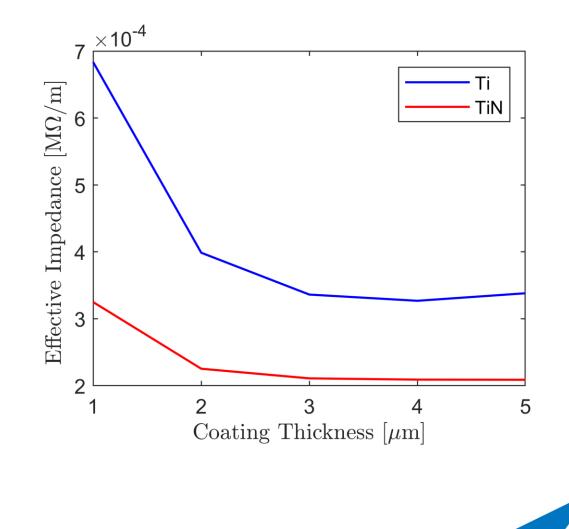
Results

- 1. Conductive coating and impedance
- 2. Field Distortion
- 3. Power deposition and heat load
- 4. Injection simulations for nominal design


Wake potential and loss for the NLK chamber

- Longitudinal loss factor calculated using CST
- Note, some CST meshing issues
 - Thin film of very small magnitude \rightarrow millions of cells in CST
- $k_{\parallel} = 0.1 \text{ V/pC}$ for the NLK design with 2 μ m Ti coating
 - Reasonable value

Impedance


ImpedanceWake2D calculations to determine longitudinal and transverse impedances for various Ti and TiN thicknesses.

Effective Impedance

- For our beam parameters:
 - 3 µm coating will act like bulk Ti due to skin depth.
 - Rules out 4-10 µm Ti or TiN coating as candidates
- Turn to field, power and heat considerations to decide between 1-3 µm Ti/TiN

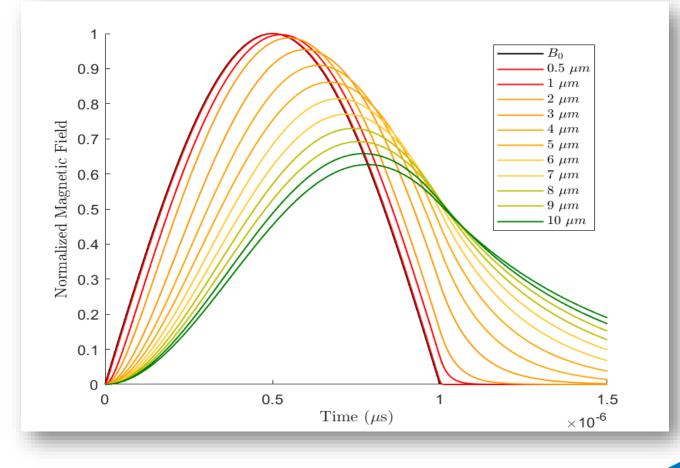
Results

1. Conductive coating and impedance

2. Field Distortion

3. Power deposition and heat load

4. Injection simulations for nominal design


Field Distortion

Assuming:

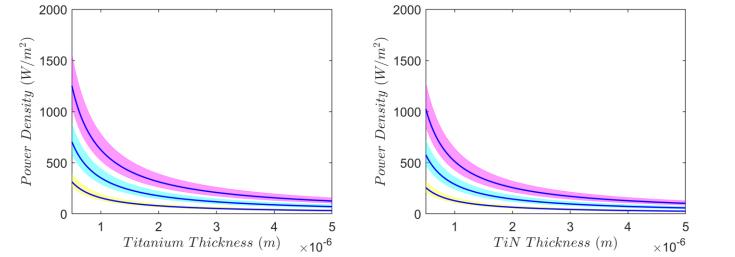
- 100 ns bunch train
- Storage ring (SR) revolution = 720.47 ns
- Kicker maximum rise time = 620.47 ns
- Flat top of 100 ns
- Maximum fall time of 620 ns

Delay:

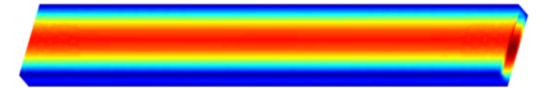
- 1 µm Ti: 45 ns
- 2 µm Ti: 95 ns
- 3 µm Ti: 135 ns
- Attenuation:
 - 1 µm Ti: 1.2 %
 - 2 μm Ti: 4.6 %
 - 3 µm Ti: 9.1 %

21

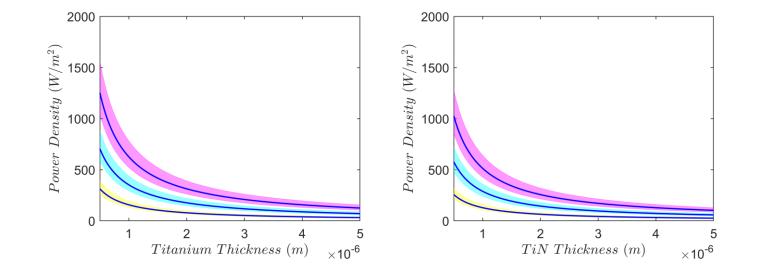
Results

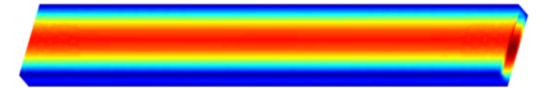

Conductive coating and impedance
Field Distortion

3. Power deposition and heat load


4. Injection simulations for nominal design

Power Deposition

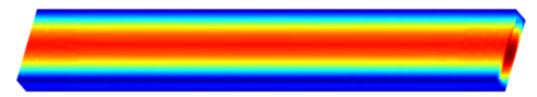

Thickness (µm)	$\begin{array}{c} P_{Ti} \\ (\mathbf{W}/m^2) \end{array}$	$\begin{array}{c} P_{TiN} \\ (\mathbf{W}/m^2) \end{array}$	T_{Ti} (°C)	T_{TiN} (°C)
1	625.8	512.6	150.3	127.7
2	312.9	256.3	87.7	76.4
3	208.6	170.9	66.9	59.33
4	156.5	128.1	56.5	50.8
5	124.9	102.3	50.1	45.6
10	62.58	51.26	37.7	35.4



ANSTO

Power Deposition

Thickness (µm)	$\begin{array}{c} P_{Ti} \\ (\mathbf{W}/m^2) \end{array}$	$\begin{array}{c} P_{TiN} \\ (\mathbf{W}/m^2) \end{array}$	-	T_{TiN} (°C)
1	625.8	512.6	150.3	127.7
2	312.9	256.3	87.7	76.4
3	208.6	170.9	66.9	59.33
4	156.5	128.1	56.5	50.8
5	124.9	102.3	50.1	45.6
10	62.58	51.26	37.7	35.4



Thermal Analysis

- For extreme operating conditions: 400 mA, 260 bunches:
 - 2 µm:
 - > Power: Ti = 312.9 W/m^2 ; TiN = 256.3 W/m^2
 - Max Temp: Ti = 87.7 °C; TiN = 76.4 °C

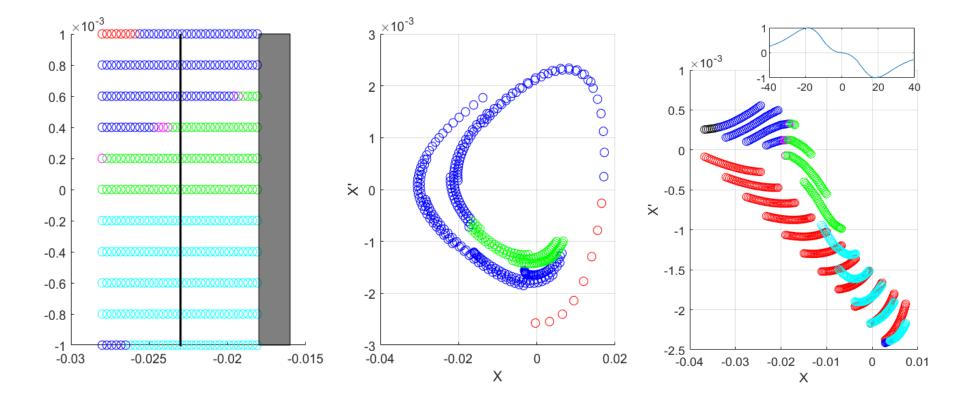
• 3 µm:

- > Power: Ti = 208.6 W/m²; TiN = 170.9 W/m²
- Max Temp: Ti = 66.9°C; TiN = 59.3°C

Results

1. Conductive coating and impedance

2. Field Distortion


3. Power deposition and heat load

4. Injection simulations for nominal design

Injection efficiencies and simulations

Tracking in Sector 5 for 1 mrad kick

ANSTO

Conclusion

- The Australian Synchrotron is looking toward our new BRIGHT beamline requirements (next 5 years) and next gen facility requirements (next 10-15 years)
- A nonlinear injection kicker is optimally positioned to provide the required space, transparency and functionality in our mission to provide cutting edge facilities to our user base
- We have highlighted the multiple (sometimes oppositional) design considerations for the NLK design for the A.S.

Future work

- Refine the CST model
- Check if we have formed any cavities/resonant modes with our design with a IVU installed in same sector downstream
- Next steps: prototype development and commissioning
- Prototype construction late 2019

Acknowledgments

- AS Physics team and operators
- Mr. Olaf Dressler (Helmholtz Berlin)
- Dr. Theo Sinkovis (SAES, Italy)

Questions

rebeccaa@ansto.gov.au

