Extinction Measurement of J-PARC MR with 8 GeV Proton Beam for the New Muon-to-Electron Conversion Search Experiment – COMET

10TH INTERNATIONAL PARTICLE ACCELERATOR CONFERENCE

19 - 24 MAY 2019 Hosted by ANSTO's Australian Synchrotron at the **Melbourne Convention & Exhibition Centre**

OME Hajime NISHIGUCHI, KEK

Contents

J-PARC & COMET
 J-PARC Accelerator
 µ-N→e-N Conversion

Customized Operation of J-PARC MR for COMET
 Experimental Requirements

How to realize ? ⇒ Customized Operation

Extinction Measurement

Result at "Abort" with FX

Result at "Hadron" with Bunched-SX

• Addendum

Conclusion & Prospects

Hajime NISHIGUCHI (KEK)

"Extinction Measurement at J-PARC for COMET"

Muon-to-Electron Conversion : " μ -*N* \rightarrow e-*N*"

- * Try to Probe New Physics via "Lepton Flavour Violation"
- * Among "Quark", "Neutrino" = Known as Flavour violated
- * "Charged Lepton Flavour Violation (cLFV)" = Never Observed so far
 - Very sensitive to the TeV-scale new physics beyond Standard Model
 - → **Complementary** and **Competitive** to the **Energy Frontier (LHC** *etc.*)
- * "Muon-to-Electron Conversion in Muonic Atom (μ - $N \rightarrow e$ -N)"
 - so-called "μ-e Conversion"
 - One of the most prominent process of muon LFV

- * "Signal"
 - * $E_{\rm e} = m_{\mu} B_{\mu} E_{\rm recoil} \sim 105 \, {\rm MeV}$
- * "Background"
 - Beam-related
 - Normal muon decay : *E*_e^{Michel} = 52.8 MeV

Proton-Beam Extinction

Dominant Background

- Beam-related prompt Background, mainly caused by pion decays
- Right after the timing of proton bunch
- Open a DAQ-window right before the next proton bunch

* Extinction is ESSENTIAL !

of leaked proton in between bunches

Extinction =

of filled protons in main bunches

Extinction should be <10⁻¹⁰ at least to achieve <u>the COMET Goal</u>

(Single Event Sensitivity : 10⁻¹⁷)

* Under Construction at Hadron Experimental Facility of J-PARC

* Under Construction at Hadron Experimental Facility of J-PARC

* Under Construction at Hadron Experimental Facility of J-PARC

Hajime NISHIGUCHI (KEK)

"Extinction Measurement at J-PARC for COMET"

* Under Construction at Hadron Experimental Facility of J-PARC

Hajime NISHIGUCHI (KEK)

"Extinction Measurement at J-PARC for COMET"

Customized Operation of J-PARC MR for The COMET Experiment

Requirements

Several other requirements, too. : Bunched Slow Extraction, 56kW Operation ...

How to realize ?

How to realize Excellent Extinction

How to measure an extinction ?

∗ Two extraction ports of MR → Two occasions to measure an extinction

Fast Extraction (FX)

- Towards Neutrino Beam line
- Possible to measure an extinction at Abort Line

[MR Abort Line]

e [Abort Monitor]

Measurable by Single Shot
 → Can be measured quickly

- Understand within MR
- Not compatible w/
 continuous beam operation
 Not precise with limited stat.

Both Occasions have Advantages/Disadvantages

Both Measurements are Necessary !!!

Slow Extraction (SX)

- * Towards Hadron Exp. Facility
- Possible to measure an extinction at Secondary Beam

[Hodoscopes in Secondary Beam Line]

- Can investigate an effect of SX
 Same as final COMET configuration with Bunched-SX
- * Measurable by 2ndary Beam
 → Need a certain beam time
 * Need a special DAQ to count all 2ndary particles

11

Hajime NISHIGUCHI (KEK)

"Extinction Measurement at J-PARC for COMET"

Results of Extinction Measurement and It's Improvement

Extinction at MR Abort with FX beam -1-

* Demonstration of Single Bunch Kicking

- * In order to demonstrate the "Single Bunch Kicking" method,
 - * Intermediate Intensity Proton (109 ppp) was injected
 - Only for the rear bucket of 4th batch (called "K4_rear" bucket)
 - Injection Kicker timing was shifted 600 nsec backward
- * Abort Monitor showed a successful demonstration of Single Bunch Kicking
 - * Before the kicker shift, small amount of residuals are shown in K4_front
 - * After the kicker shift, no any protons are appeared in K4_front

Extinction at MR Abort with FX beam -2-

* Fill the full intensity protons... (COMET Intensity = 1.6×10¹² ppp)

- * If the full intensity proton for COMET operation is injected to K4_rear,
 - * Some leaked proton signals are appeared even kicker timing is shifted
 - * These protons are leaked over the potential wall of K4_rear RF bucket
- * These can be avoided by keeping RF voltage high enough even during the flat-top
 - eg. Keeping RF of 200kV during the flat top,
 - * A perfect extinction was realized !!

Hajime NISHIGUCHI (KEK)

Extinction at MR Abort with FX beam -3-

* Result of Extinction Measurement at Abort w/ FX as a function of RF voltage

- * Extinction can be improved by increasing RF voltage accordingly.
- Inside MR, good enough extinction is achieved by keeping RF high enough during flat-top. However it is mandate to demonstrate it at Hadron w/ bunched-SX.

Extinction at "Hadron" with Bunched-SX beam -1-

- Rear buckets were filled with protons of COMET * intensity, No kicker shift -> Initial Extinction
- Afraid the inefficiency of DAQ for filled bucket \rightarrow * Redundancy w/ 3 different TDCs \rightarrow Good agreements
- Measured Initial Extinction = $7 \sim 8 \times 10^{-6}$, * \rightarrow Consistent with the result from studies w/ FX

3250

1301

Extinction at "Hadron" with Bunched-SX beam -2-

* Result with kicker shift to realize an excellent extinction

- Front buckets were filled with protons of COMET intensity (1.6×10¹² ppp) and Injection Kicker was shifted 600 nsec forward
- * **Perfect Extinction (= No Leak)** was realized for 3 Injection Batches (K1, K2 and K3)
- * But...
 - * Small amount of residual protons are shown in K4 rear...

Extinction at "Hadron" with Bunched-SX beam -3-

Three feasible Scenarios;

Scenario "A"	Mask the beginning events (<0.1s within extraction start)	6×10 ⁻¹⁰ Not enough
Scenario "B"	Avoid the 4th Injection (K4) (Use only K1, K2 and K3)	1×10 ⁻¹⁰ Just Matched
Scenario "C"	Solve K4_rear Mystery (Can use all bunch datas)	<6×10 ⁻¹¹ Further Improvement

- * *Scenario-***A** doesn't match with the requirement, but *Scenario-***B** can match.
- * *Scenario-B* just matches with the requirement, but the beam power would be worsen.
- * Scenario-C can realize the further improvement → As long as no leakage, experimental sensitivity will improve.

In order to realize *Scenario*-C, analysis on leaked proton has been carried out carefully.

Hajime NISHIGUCHI (KEK)

"Extinction Measurement at J-PARC for COMET"

addendum

"What does cause K4_rear Mystery" ???

- Most suspicious assumption:
 - * Tail of Kicker Excitation ?
 - Injection Kicker filed has a small but a certain trailing component
 - Shift for "Single Bunch Kicking" is half a excitation duration (= 600 nsec)
 - Shift of 600 nsec might be not long enough
 - → Can cause imperfect extinction
- * Why only K4_rears shows a Mystery ?

* Kicker excitation can extinct the residual protons in the prior batch

- Can be tested quickly just shit the kicker timing little more
- * Following kicker excitation might have a finite effect...
- * Let's test it by FX !!

Hajime NISHIGUCHI (KEK)

"Extinction Measurement at J-PARC for COMET"

Summary & Prospects

- Proton Extinction is one of the most important parameter for the COMET
 - Extinction should be better than 10⁻¹⁰ at least
- Fire major requirements on J-PARC MR
 - 8 GeV acceleration instead of 30 GeV
 - [©] 1.2 μsec bunch separation instead of 0.6 μsec
 - [©] 10⁻¹⁰ extinction though nobody has taken care...
- Result of extinction studies;
 - Perfect Extinction by K1, K2 and K3, but K4_rear has a tiny amount of residual protons

All demonstrated

- Extinction = 1×10⁻¹⁰, if K4 would be thrown away
- Extinction < 6×10⁻¹¹, if K4_rear Mystery would be solved
- Experimental Sensitivity will be improved accordingly as long as extinction will be improved.
- Most suspicious source of "K4_rear Mystery" was confirmed by a quick test at Abort with FX -> Should be demonstrated at Hadron with B-SX

J-PARC MR is READY for COMET