

Magnet Design for Siam Photon Source II

<u>P. Sunwong</u>, S. Prawanta, T. Phimsen, P. Sudmuang and P. Klysubun

Synchrotron Light Research Institute, Thailand

IPAC'19, Melbourne, Australia

Siam Photon Source II Project

Requirements

- Ring circumference below 400 m
- **3 GeV** electron beam energy
- Maximum beam current at 300 mA
- Beam emittance below 1.0 nm·rad
- Moderate magnet requirements
- Minimum total budget
- Feasibility for existing technologies

Siam Photon Source II Project

Accelerator design	
Beam energy	3 GeV
Beam current	300 mA
Emittance (x)	0.96 nm∙rad
Lattice structure	DTBA (14)
STR Circumference	321.3 m
RF voltage	2.2 MV
Injector	Full-energy linac

TUPGW072 (Injector design)

Siam Photon Source II Project

STR Magnet Requirements

Parameters	D0	DQ	QF4	QD, QF1, QF6, QF8	SD1	SD2, SF	OF1	COR
Effective length (m)	1.000	0.850	0.162	0.162 - 0.412	0.140	0.140	0.090	0.100
Dipole field (T)	0.87	0.6	-	-	0.057	0.057	-	0.08
Quadrupole field (T/m)	-	27.1	44	45 - 60	0.57	0.57	-	-
Sextupole field (T/m ²)	-	-	-	-	2030	1140 - 1450	-	-
Octupole field (T/m ³)	-	-	-	-	-	-	72000	-
GFR (mm)	±14	±8	±16	±10	±13	±15	±15	±16
Field homogeneity	1x10 ⁻⁴	5x10 ⁻³	5x10 ⁻⁴	5x10 ⁻⁴	1x10 ⁻³	1x10 ⁻³	5x10 ⁻³	-

SYNCHROTRON THAILAND CENTRAL LAB

STR Magnet Requirements

Parameters	D0	DQ	QF4	QD, QF1, QF6, QF8	SD1	SD2, SF	OF1	COR
Effective length (m)	1.000	0.850	0.162	0.162 - 0.412	0.140	0.140	0.090	0.100
Dipole field (T)	0.87	0.6	-	-	0.057	0.057	-	0.08
Quadrupole field (T/m)	-	27.1	44	45 - 60	0.57	0.57	-	-
Sextupole field (T/m ²)	-	-	-	-	2030	1140 - 1450	-	-
Octupole field (T/m ³)	-	-	-	-	-	-	72000	-
GFR (mm)	±14	±8	±16	±10	±13	±15	±15	±16
Field homogeneity	1x10 ⁻⁴	5x10 ⁻³	5x10 ⁻⁴	5x10 ⁻⁴	1x10 ⁻³	1x10 ⁻³	5x10 ⁻³	-

Sketch of vacuum chamber cross-section for magnet design

SYNCHROTRON THAILAND CENTRAL LAB

Dipole Magnet 0.87 T

Parameter	Value
Dipole field	0.87 T
Magnet gap	30 mm (full)
Effective length	1000 mm
Physical length	962 mm
Turn number	16
Conductor size	7 mm x 12 mm, \oslash 3 mm
Operating current	670.7 A
Cooling circuit	2 per coil
Temperature rise	< 6.0 °C at 2 bar (5 L/min)
Power	7.9 kW
Field homogeneity	Better than 1×10^{-4}
$\Delta B_n / B_1$	< 1×10 ⁻⁴
GFR	±14 mm
Optimization margins	±5%

Shims on the pole surface and also on both ends of the magnet for improving the field quality

Dipole-Quadrupole Magnet 0.6 T, 27.1 T/m

Parameter	Value	
Dipole, quadrupole fields	0.6 T, 27.1 T/m	
Pole radius, offset	26 mm, 22.2 mm	
Effective length	850 mm	
Physical length	820 mm	$\begin{bmatrix} 0 & -0.8 \\ \vdots \\ 0 & -1.0 \end{bmatrix}$
Turn number	35 (7)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Conductor size	8.0 mm x 8.0 mm, \varnothing 4 mm	x (mm) x (mm)
Operating current	210 A	10 15 20 25 30 35 40 45 50 0 200 400
Cooling circuit	2 (1) per coil	35 ESRF OILSFOALBA OCANDLE
Temperature rise	< 7°C at 4 bar (1 – 2 L/min)	
Power	3.4 kW	PE 20 O Diamond 0.8 - 20 0 - 200
Field homogeneity	Better than 5×10 ⁻³	0.6 <u>G</u> 0.4 -200 0.4 -200
$\Delta B_n / B_1$	< 3×10 ⁻³	G • Sirius ILSF • ALBA • CANDLE 0.2 • CANDLE 0.2
GFR	±8 mm	10 15 20 25 30 35 40 45 50 Gan/Bore radius (mm) Based on ESRF's design
Optimization margins	±5%	SYNCHROTR THAILAND

CENTRAL LAB

Quadrupole Magnets

Parameter	Small R	Large R		
Quadrupole field	45 – 60 T/m	44 T/m		
Pole radius	16 mm	18 mm		
Effective length	162 – 412 mm	162 mm		
Physical length	144 – 397 mm	142 mm		
Turn number	35			
Conductor size	7.0 mm x 7.0 mm, Ø 4 mm			
Operating current	140 – 190 A	180 A		
Cooling circuit	1 per coil			
Temperature rise	< 7°C at 2 – 3 L/min			
Power	1.1 – 3.1 kW	1.6 kW		
Field homogeneity	Better than 5×10 ⁻⁴			
$\Delta B_n/B_1$	< 7×10 ⁻⁵	< 2×10 ⁻⁴		
GFR	±10 mm ±16 mm			
Optimization margins	±20%			

Sextupole Magnets

Parameter	Small R Large I		
Sextupole field	2030 T/m ²	1140 – 1450 T/m ²	
Pole radius	22 mm	24 mm	
Effective length	140 mm		
Physical length	125 mm		
Turn number	20		
Conductor size	6 mm x 6 mm, Ø 3 mm		
Operating current	145 A	105 – 135 A	
Cooling circuit	6 per magnet		
Temperature rise	< 2°C at 2 bar (2.2 L/min)		
Power	0.9 kW 0.5 – 0.8		
Field homogeneity	Better than 1×10 ⁻³		
$\Delta B_n / B_1$	< 5×10 ⁻⁵	< 1×10 ⁻⁵	
GFR	±13 mm ±15 mm		
Optimization margins	±50%		

10

CENTRAL LAB

Prototype Development

- In-house design, fabrication and magnetic field measurement at SLRI in early stage
- Collaboration with local manufacturing industries in Thailand and knowledge transfer
- **High-precision machining** manufacturers for magnet yoke fabrication and assembly
- Transformer industries for magnet coil fabrication
- Magnetic field measurement systems to be developed by SLRI, simple measurement can be transferred to manufacturers during the mass production
- Prototype of other components within a half-cell: vacuum chamber, magnet support, girders, beam position monitors, etc.

TUPGW109 (Vacuum chamber design)

SYNCHROTRON THAILAND CENTRAL LAB

DQ Prototype

- Yoke and coils manufactured in-house
- Magnet length is limited to 300 mm due to capability of EDM wire cutting machine
- Machining and assembly tolerance between 10 80 μm with shims
- Improvement of engineering design for the full-scale DQ prototype
- Measured magnetic field agrees with the calculation within 1%

SD1 Prototype

- Yoke manufactured by local industry
- Coils manufactured by SLRI ٠
- First SD1 made of solid steel, aim for tolerance of $10 20 \mu m$ ٠
- Chamfer study ٠
- Real SD1 to be made of laminated steel for fast orbit feedback system ٠

Vertical coils Skew-quadrupole coils

13

Sextupole coils

Horizontal coils

SYNCHROTRON

THAILAND

SD1 Prototype

THPTS076

SYNCHROTRON THAILAND CENTRAL LAB

Concluding Remarks

Current status and ongoing works at SLRI (magnet related)

Prototype development for STR magnets (half-cell)

- Cross-check of magnetic field calculation with commercial software and investigation of magnet cross-talk
- Optimization of coil cooling parameters for minimum cost
- Engineering design and manufacturing drawing
- Development of magnetic measurement system
- Collaboration with local industries
- Design of pulsed multipole magnet for injection
- Design of magnets for the full-energy linac and injector
- Injector installation in 2025, STR installation in 2026
- Estimated cost of magnet system and 5 x insertion devices \rightarrow 700 Million THB / 22 Million USD

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 CDR DDR/STR magnet design Injector magnet design Injector STR **Components production** Commissioning installation installation Prototype development SYNCHROTRON

THAILAND

60% domestic