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Basic definitions

Consider a mapping (map) T : M — M defined by a function f

Cn+1 — f(Cn), C,' € M.
Manifold M can be R”, C", S”, T", etc
The trajectory of (j is the finite set

{0, T(), T?(Co), - - -, T"(¢o) }

The orbit of (p, is a set of all points that can be reached

{--T72(%), T7*(Go): Cos T(G0)s T?(Go)s - - -}

The n-cycle (or periodic orbit of periof n) is a solution of

T"(¢o) = Co
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Cobweb plot: periodic vs. chaotic orbits

Example: Logistic map

Xnt1 = F(xn) = rxn (@ — xp)

f(x)=0.77x(5-x) f(x)=0.77x(5-x)
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Sharkovskii's theorem (1964)

Suppose T : R — R is continuous. Suppose that T has a periodic
point of period n and that n precedes k in the Sharkovski ordering.
Then T also has a period point of prime period k.

3x20<5%x20 < 7x20<9x20 < .
3Ix2l <5 x2l <7x2l<9x2l <. ..
3x22<5x22<7x22<9x22< ...

=20 <23 022 01 2

Li and Yorke (1975) proved that any one-dimensional system which
exhibits a regular cycle of period 3 will also display regular cycles of
every other length as well as completely chaotic cycles.
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Generalization of Sharkovskii's theorem

Sharkovskii's theorem does not immediately apply to dynamical sys-
tems on other topological spaces. It is easy to find a circle map with
periodic points of period 3 only: take a rotation by 120 degrees, for
example. But some generalizations are possible, typically involving
the mapping class group of the space minus a periodic orbit. For
example, Peter Kloeden showed that Sharkovskii's theorem holds for
triangular mappings.

f(p)=p/(1-
S p=q (p)=p/(1-pxp) b=
\
p=f(q)/2
p=f(q)/2
-15 -1.0 -05 00 05 1.0 15 -15 -1.0 -05 00 05 1.0 15
q q
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Symplectic mappings of the plane

We will consider area-preserving mappings of the plane

"= ’Eq,p), det [8q’/8q 8q’/6p]

op'/oq 0p'/op

p

Identity, Id Rotation, Rot Reflection®**, Ref
10 cosf —sinf cos20  sin20
01 sinf  cos@ sin20 — cos 20
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Integrable systems

A map T in the plane is called integrable, if there exists a non-
constant real valued continuous functions K(gq, p), called integral,
which is invariant under T:

Y(a,p):  K(g,p) =K(d,p)

where primes denote the application of the map, (¢, p') = T(q, p).

Example: Rotation transformation

Rot(f): ¢ = q cosf — psinf
p'=¢qsinf + p cosf

has the integral K(q, p) = ¢° + p.
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Superintegrable systems

If @ and 7 are commensurable, then transformation Rot(#) has in-
finitely many invariants of motion.

Example: Rotations through angles -7 /4 has another invariant

K(q,p) = ¢*°p* +T(q* +p°),  VI.

Rotn/4)  [F<0] =0, r>0p
P Ji /AN
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McMillan form of the map

McMillan considered a special form of the map
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1D accelerator lattice with thin nonlinear lens, T = F o M
Ne [y}/_[cos¢+asin¢ B sin® ] [y}

y —y sin® cos® —asind| |y

S EEAL

where o, 8 and «y are Courant-Snyder parameters at the thin lens
location, and, ® is the betatron phase advance of one period.

Mapping in McMillan form after CT to (g, p), T = F o Rot(—m/2)

a=yY,
p=y(cos®+ asin®)+y S sind,

F(q) =2q cos® + S F(q) sin®|.
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Turaev theorem

INSTITUTE OF PHYSICS PUBLISHING NONLINEARITY

Nonlinearity 16 (2003) 123-135 PII: S0951-7715(03)35323-X

Polynomial approximations of symplectic dynamics
and richness of chaos in non-hyperbolic
area-preserving maps

Dmitry Turaev
Recommended by C Liverani

Abstract

It is shown that every symplectic diffeomorphism of R*" can be approximated,
in the C*-topology, on any compact set, by some iteration of some map of
the form (x,y) —= (y+n,—x + VV(y)) where x € R", y € R", and V
is a polynomial R” — R and 5 € R" is a constant vector. For the case of
area-preserving maps (i.e. n = 1), it is shown how this result can be applied to
prove that C"-universal maps (a map is universal if its iterations approximate
dynamics of all C"-smooth area-preserving maps altogether) are dense in the
C"-topology in the Newhouse regions.
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Suris theorem and recurrence x,;1 + X,—1 = f(X,).

INTEGRABLE MAPPINGS OF THE STANDARD TYPE

THEOREM.

Yu. B. Suris upc 517.9

Tnyy — 22p + 2, = &F (20, ), (1)
Fao= 3 @ [el<en (2)
k=0

Equation (1) has a nontrivial symmetric integral of the form

D (2,4, 8) = Oy (z,y) + e® (z, 1), (4)

holomorphic in the domain [x = y| < &,, in the following and only in the following three

cases:

a)  F(z,€) = (4 + Bz + Ca* + Da®)/(1 — e (E + Caf/3 + Da%2)),
@ (2, y) = (z — y)*2, O (z,y) = —A (z+ y)/2 — Bay/2 — C;zyl)(;;rz/é/)ﬁi oM

2 wz—g(Asinsz‘Bcosmz+Csin2mz + D cos 20z)
6) F(z,e)= o aretg

i %(Acosu)z7Bsinu:xr}»Cc()Sme—Dsianx—]-E) i
@ (2, y) = (1 — cos o (x — y))/o?, O, (z,y) = (4 (cos wz + cos wy) —
— B (sin wz + sin wy) + C cos o (z + y) — D sin o (z + y) + E cos o (z — y))/20

I 1 14 o8 (Bexp(—az)L D exp (— 2az) — E)
B) Flae =gl —o o (A exp (ez) + Cexp (2az) |-E)
Dy (2, y) = (cha (z — y) — 1)/, Dy (z,y) = (—A (** + ) +

+ B (7% 4 M) — M) - D M) 2F ch oo (z — y))/2a.

Tim Zolkin Isolated Period 3 Implies Chaos



A. latrou and J. Roberts [Nonlinearity 15 (2002)]

Appendix A. Fixed points of maps possessing an integral

Suppose L : x > x’ withx € R” is a diffeomorphism with a smooth integral (or invariant)

K (x) satisfying K (x') = K (x) for all x € R".

(1) acritical point is mapped to a critical point (since L is a diffeomorphism so that dL (x) is
non-singular);

(2) isolated critical points always belong to n-cycles of L, n > 1 (n = 1 giving fixed points);
in particular, if there are a finite number of critical points of K, they all belong to n-cycles
of L;

(3) if x is a point of an n-cycle (i.e. x" = x), we find
0K
@L"@®" =1 ——@) =0, (138)
ax
so if (dL"(x)T — 1) is non-singular, then the point is also a critical point. The non-

singularity condition is equivalent to saying dL" (x) has no eigenvalue equal to 1, which
in turn means that the n-cycle containing x is isolated from other n-cycles.

One way to summarize this is as follows: isolated critical points of the integral belong
to (isolated) cycles of the map and the points of isolated cycles of the map are (isolated)
critical points of the integral. However, it should be noted that in integrable maps (e.g. n = 2
when existence of one integral suffices) n-cycles generically are not isolated and come in
one-parameter families (the points of which are not critical points of the integral).
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Example 1: Octupole McMillan map, f(q) = —qzziqr

K(q,p) =p*¢*+T(p*+9°) +2¢€pgq

Fixed points 5 3 E
and 2—cycles 5§38
fi =0 ® ® O
fs=%+/-e-T'|® ® ©
cp=%+/e-T'|l® ® 0O

Stability

Critical points g .
of K(q,p) 3

g 3
K=0 - +
K =(@E+D)? o +
K=(-I) -+
K=r12 $
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q(g+2¢)

Example 2: Sextupole McMillan map, f(q) = s

K(g.p)=p*q+pqg”+T(p? +q2)+26pq
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Example 3: Hénon, f(q) = aq + bq?, and
Cohen, f(q) = \/q? + 1, chaotic maps
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Example 4: Picewise linear continous maps

Tim Zolkin Isolated Period 3 Implies Chaos



Example 5: Picewise linear continous maps
(layers of linear islands)
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