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Abstract
Gridless symplectic methods for self-consistent modeling

of space charge in intense beams possess several advantages
over traditional momentum-conserving particle-in-cell meth-
ods, including the absence of numerical grid heating and
the presence of an underlying multi-particle Hamiltonian.
Despite these advantages, there remains evidence of irre-
versible entropy growth due to numerical particle noise. For
a class of such algorithms, a first-principles kinetic model
of the numerical particle noise is obtained and applied to
gain insight into noise-induced entropy growth and thermal
relaxation.

INTRODUCTION
Distinguishing between physical and numerical emittance

growth observed in long-term tracking of beams with space
charge is critical to understanding beam performance at high
intensities. Numerical emittance growth has been modeled
as a collisional increase of the beam phase space volume
driven by random noise caused by the use of a small num-
ber of macroparticles, and intimately related to the beam
entropy [1]. Recently, several authors have developed meth-
ods for multiparticle tracking (in plasmas or beams) using
variational or explicitly symplectic algorithms designed to
preserve the geometric properties of the self-consistent equa-
tions of motion [2–4]. The multi-particle symplectic algo-
rithm described in [4] is sufficiently simple that field fluctua-
tions and emittance growth on a single numerical step can be
studied analytically [5]. In this paper, we develop a kinetic
formalism to better understand the dynamical evolution of
particle noise in this and similar algorithms.

SYMPLECTIC SPECTRAL ALGORITHM
We extend the algorithm described in Section III of [4] to

treat the Poisson equation in a general bounded domain Ω ⊂
ℝ𝑑 (𝑑 ≤ 2) with conducting boundary 𝜕Ω. The symplectic
map describing a numerical step in the path length coordinate
𝑡 is performed by applying second-order operator splitting
to the following multi-particle Hamiltonian:

𝐻𝑁 =
𝑁

∑
𝑗=1

𝐻ext( ⃗𝑟𝑗, ⃗𝑝𝑗, 𝑡) + 1
2𝑁

𝑁
∑

𝑗,𝑘=1
𝐺( ⃗𝑟𝑗, ⃗𝑟𝑘). (1)

Here 𝐻ext is the single-particle Hamiltonian in the external
applied fields, 𝑁 denotes the number of simulation particles,
and 𝐺 denotes a two-body interaction potential, given by:

𝐺( ⃗𝑟, ⃗𝑟′) = −
𝑀
∑
𝑙=1

𝑛
𝜆𝑙

𝑒𝑙( ⃗𝑟)𝑒𝑙( ⃗𝑟′), (2)
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where 𝑀 denotes the number of computed modes and 𝑛 is
a space charge intensity parameter. The smooth functions
𝑒𝑙 (𝑙 = 1, 2, …) form an orthonormal basis for the space of
square-integrable functions on the domain Ω, and satisfy:

∇2𝑒𝑙 = 𝜆𝑙𝑒𝑙, 𝑒𝑙∣𝜕Ω = 0, (𝜆𝑙 < 0). (3)

It follows from (1-3) that each particle moves in response to
a space charge potential 𝑈 satisfying the Poisson equation:

∇2𝑈 = −𝜌, 𝑈|𝜕Ω = 0, (4)

where 𝜌 is a particle-based approximation to the beam den-
sity, given by taking the first 𝑀 modes:

𝜌 =
𝑀
∑
𝑙=1

𝜌𝑙𝑒𝑙, 𝜌𝑙 = 𝑛
𝑁

𝑁
∑
𝑗=1

𝑒𝑙( ⃗𝑟𝑗). (5)

Due to the factorized form of the interaction (2), the compu-
tational complexity of each timestep is ∼ 𝑂(𝑁𝑀).

STATISTICAL APPROACH
Neglecting the error due to finite timestep, and holding

the number of modes 𝑀 fixed, the system of particles is
described by the 𝑁-body Hamiltonian (1). For simplicity,
consider a constant focusing system, so that 𝐻ext in (1) is
independent of 𝑡. Assume that initial particle coordinates
𝑧𝑗 = ( ⃗𝑟𝑗, ⃗𝑝𝑗), 𝑗 = 1, … , 𝑁 are randomly sampled from a
probability density 𝑓0 on the single-particle phase space.
The joint probability density on the 𝑁-body phase space
describing the particles at 𝑡 = 0 is:

𝑃𝑁(𝑧1, … , 𝑧𝑁; 0) =
𝑁

∏
𝑗=1

𝑓0(𝑧𝑗). (6)

The evolution of the joint probability density is governed by
the Liouville equation 𝜕𝑃𝑁/𝜕𝑡 + {𝑃𝑁, 𝐻𝑁} = 0, and we are
interested in the single-particle density function 𝑓:

𝑓 (𝑧, 𝑡) = ∫ 𝑃𝑁(𝑧, 𝑧2, … , 𝑧𝑁; 𝑡)𝑑𝑧2 … 𝑑𝑧𝑁. (7)

This can be obtained from the BBGKY hierarchy obtained
from (1), or by studying the Klimontovich density:

𝑓𝐾(𝑧, 𝑡) = 1
𝑁

𝑁
∑
𝑗=1

𝛿(𝑧 − 𝑧𝑗(𝑡)), (8)

where (𝑧1(𝑡), … , 𝑧𝑁(𝑡)) is an orbit of (1) with random initial
condition sampled from (6). It follows that 𝑓 = E[𝑓𝐾].

Given any density function ℎ on the single-particle phase
space, we define a single-particle Hamiltonian 𝐻𝑀𝐹[ℎ] by:

𝐻𝑀𝐹[ℎ] = 𝐻ext + 𝐻𝑆𝐶[ℎ], (9a)
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where 𝐻𝑆𝐶[ℎ] is the mean-field potential associated with ℎ,
given in terms of the interaction (2) by:

𝐻𝑆𝐶[ℎ]( ⃗𝑟) = ∫ 𝐺( ⃗𝑟, ⃗𝑟′)ℎ(𝑧′)𝑑𝑧′, ⃗𝑟 ∈ Ω. (9b)

It follows from (1) and Hamilton’s equations that 𝑓𝐾 in (8)
satisfies:

𝜕𝑓𝐾
𝜕𝑡 + {𝑓𝐾, 𝐻𝑀𝐹[𝑓𝐾]} = 0. (10)

Note that (10) is interpreted to hold after integrating against
a smooth test function of compact support [6].

KINETIC EQUATIONS
We desire an equation for the single-particle density 𝑓.

Denote 𝑓 = E[𝑓𝐾] and 𝛿𝑓 = 𝑓𝐾 − 𝑓. It follows from (10) that:

𝜕𝑓
𝜕𝑡 + {𝑓 , 𝐻𝑀𝐹[𝑓 ]} = E{𝐻𝑆𝐶[𝛿𝑓 ], 𝛿𝑓 }. (11)

Note that (11) corresponds to the lowest-order equation in
the BBGKY hierarchy. It is exact, but it is not closed due to
the appearance of 𝛿𝑓.

The hierarchy can be closed [7, 8] by noting that for long-
range interactions, 𝛿𝑓 ∼ 𝑂(1/√𝑁). Defining 𝑔 = √𝑁𝛿𝑓,
subtracting (10) from (11), and evaluating the resulting equa-
tion for 𝑔 to leading order in 1/𝑁 gives the coupled pair of
kinetic equations:

𝜕𝑓
𝜕𝑡 + {𝑓 , 𝐻𝑀𝐹[𝑓 ]} = 1

𝑁 E{𝐻𝑆𝐶[𝑔], 𝑔}, (12a)

𝜕𝑔
𝜕𝑡 + {𝑔, 𝐻𝑀𝐹[𝑓 ]} + {𝑓 , 𝐻𝑆𝐶[𝑔]} = 0, (12b)

where 𝑔 is the Gaussian random field satisfying at 𝑡 = 0:

E[𝑔0] = 0, E[𝑔0(𝑧)𝑔0(𝑧′)] = 𝛿(𝑧 − 𝑧′)𝑓0(𝑧) − 𝑓0(𝑧)𝑓0(𝑧′).

The system (12) is our fundamental model. In the limit
𝑁 → ∞, we recover the Vlasov equation for the interaction
(2). The term on the right-hand side of (12a) describes the
effect of the fluctuation 𝑔 associated with the initial ran-
dom sampling, which propagates according to the linearized
Vlasov equation (12b). The statistics of 𝑔0 follow from (6).

Perturbation Around Vlasov Equilibrium
Let 𝑓1 denote a stationary solution of (12a) with 𝑁 → ∞

(a Vlasov equilibrium). We analyze (12) perturbatively by
taking 𝑓 = 𝑓1 + 1

𝑁 𝑓2 + … and 𝑔 = 𝑔1 + 1
𝑁𝑔2 + …. Using

these expressions in (12) and equating terms of like order
in 1/𝑁 gives a sequence of linear equations for the 𝑓𝑗, 𝑔𝑗,
𝑗 = 1, 2, … describing deviations from Vlasov equilibrium of
successively higher order in 1/𝑁. In particular, let 𝐿 denote
the linear operator:

𝐿ℎ = {ℎ, 𝐻𝑀𝐹[𝑓1]} + {𝑓1, 𝐻𝑆𝐶[ℎ]}. (13)

Then the leading correction 𝑓2 is obtained by solving:

𝜕𝑓2
𝜕𝑡 + 𝐿𝑓2 = E{𝐻𝑆𝐶[𝑔1], 𝑔1}, 𝜕𝑔1

𝜕𝑡 + 𝐿𝑔1 = 0, (14)

with initial conditions 𝑓2 = 0 and 𝑔1 = 𝑔0 at 𝑡 = 0.
In some cases, the solution of the rightmost equation

in (14) is known explicitly. For a clear 1D example with
applications to particle noise, see [9]. In this case, we write
𝑔1(𝑡) = 𝑒−𝑡𝐿𝑔0, suppressing the dependence on 𝑧. Then 𝑓2
is given by:

𝑓2(𝑡) = ∫
𝑡

0
𝑒−(𝑡−𝜏)𝐿 E{𝐻𝑆𝐶[𝑒−𝜏𝐿𝑔0], 𝑒−𝜏𝐿𝑔0}𝑑𝜏. (15)

Energy, Entropy, and Observables
Under the assumption that 𝐻ext is independent of 𝑡, the

Hamiltonian (1) is an invariant of 𝑁-body motion. Taking
the limit 𝐻𝑁/𝑁 as 𝑁 → ∞ gives the statistical energy:

𝑄 = ∫ 𝐻ext(𝑧)𝑓 (𝑧)𝑑𝑧 + 1
2 ∫ 𝑓 (𝑧)𝐺( ⃗𝑟, ⃗𝑟′)𝑓 (𝑧′)𝑑𝑧𝑑𝑧′. (16)

Likewise, the Boltzmann entropy is defined as [1]:

𝑆 = −𝑘𝐵 ∫ 𝑓 (𝑧) ln 𝑓 (𝑧)𝑑𝑧. (17)

Using (14), we obtain the following expression for the growth
rate of the beam entropy, valid to first order in 1/𝑁:

𝑑𝑆
𝑑𝑡 = 𝑘𝐵

𝑁 ∫ E{𝐻𝑆𝐶[𝑒−𝑡𝐿𝑔0], 𝑒−𝑡𝐿𝑔0} ln 𝑓1𝑑𝑧. (18)

If 𝜙 is a function on the single-particle phase space, we let
⟨𝜙⟩ = 1

𝑁 ∑𝑁
𝑗=1 𝜙(𝑧𝑗). Then E[⟨𝜙⟩] = ∫ 𝜙(𝑧)𝑓 (𝑧)𝑑𝑧.

RELAXATION TO EQUILIBRIUM
The unique 𝑓 maximizing (17) for fixed (16) is the self-

consistent Boltzmann distribution 𝑓𝑒𝑞 ∝ 𝑒−𝐻𝑀𝐹[𝑓𝑒𝑞]/𝑘𝐵𝑇. We
study relaxation to 𝑓𝑒𝑞 for a beam initially described by a
self-consistent waterbag distribution of the form:

𝑓0 ∝ Θ(𝐻0 − 𝐻𝑀𝐹[𝑓0]), (19)

in a constant-focusing channel 𝐻ext = 1
2 (𝑝2

𝑥 +𝑝2
𝑦)+ 1

2𝑘2(𝑥2 +
𝑦2). Note that (19) is a stationary solution of (12a) in the
limit 𝑁 → ∞. A 2.5 MeV proton beam with 120 mA current
is used, with 𝑘 and 𝐻0 chosen to give 𝜖𝑥,𝑛 = 𝜖𝑦,𝑛 = 0.6 𝜇m
and 𝜎𝑥 = 𝜎𝑦 = 3.8 mm. 5-20K particles initially sampled
from (19) are tracked with space charge using 128 × 128
spectral modes in a rectangular domain Ω of side 3.4 cm.

To study relaxation of the distribution, we use a momen-
tum kurtosis parameter, as used in [10]:

𝜅 =
⟨𝑝4

𝑥⟩ + ⟨𝑝4
𝑦⟩

2(𝑘𝐵𝑇)2 − 2, 𝑘𝐵𝑇 =
⟨𝑝2

𝑥⟩ + ⟨𝑝2
𝑦⟩

2 , (20)

where 𝜅 ≈ 0.21 for 𝑓0 (waterbag) and 𝜅 = 1 for 𝑓𝑒𝑞 (Boltz-
mann). Fig. 1 shows the evolution of 𝜅 as a function of 𝑡 (in
betatron periods 𝐿 = 2𝜋/𝑘) for 𝑁 = 5K. The growth to sat-
uration is reasonably described by 𝜅(𝑡) = 1 − 𝑒−𝑡/𝜏(1 − 𝜅0)
for relaxation time 𝜏 = 4, 750 (blue). Fig. 2 illustrates the
initial and final particle distributions in momentum space.

The relaxation rate is given in terms of the beam moments
near 𝑡 = 0 by:

1
𝜏 = 1

1 − 𝜅 ( 1
(𝑘𝐵𝑇)2

𝑑
𝑑𝑡 ⟨𝑝

4
𝑥⟩ − 2

𝑘𝐵𝑇(𝜅 + 2) 𝑑
𝑑𝑡 ⟨𝑝

2
𝑥⟩)∣

𝑡=0
,
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where we have used the isotropy of the momentum distribu-
tion. Using (14-15), one may obtain an expression for the
rate of change of an observable 𝜙 to leading order in 1/𝑁:

𝑑
𝑑𝑡 ⟨𝜙⟩∣

𝑡=0
= 1

𝑁 ∫ E{𝜙, 𝐻𝑆𝐶[𝑔0]}(𝑧)𝑔0(𝑧)𝑑𝑧. (21)

Using the expression for 𝑔0 and applying (2) gives:

𝑑
𝑑𝑡 ⟨𝜙⟩∣

𝑡=0
= 1

𝑁
𝑀
∑
𝑙=1

𝑛
𝜆𝑙

∫{𝑓0, 𝜙} (𝜌𝑙
0𝑒𝑙 − 1

2𝑒2
𝑙 ) 𝑑𝑧, (22)

where 𝜌𝑙
0 denotes the coefficient of mode 𝑙 in the initial

spatial density. Using (22) in the expression for 1/𝜏 gives
a contribution from each spectral mode that scales linearly
with space charge intensity 𝑛 and inversely with the number
of simulation particles 𝑁. The prediction that 𝜏 ∝ 𝑁 is
consistent with numerical tracking, as shown in Fig. 3.

Figure 1: Evolution of (20) showing relaxation of a waterbag
beam to Boltzmann equilibrium in a constant-focusing chan-
nel in the presence of numerical particle noise.
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Figure 2: Initial (left) and final (right) distributions in mo-
mentum space, illustrating the transition from waterbag to
Boltzmann equilibrium due to numerical particle noise.

CONCLUSION
A kinetic formalism was developed to describe particle

noise in a gridless multi-symplectic space charge algorithm
[4], resulting in a generalized Lenard-Balescu model with
long-range interaction (2). In a constant focusing channel,
we observe relaxation of a beam initialized in a waterbag
Vlasov equilibrium to a Boltzmann (thermal) equilibrium.

ln
((
1
�

0
)/
(1

�

))

Figure 3: Comparison of kurtosis evolution for 𝑁 = 5K,
10K, 20K. Slope of each fitted green curve gives the relax-
ation rate 1/𝜏, illustrating that 𝜏 scales linearly with 𝑁.

The relaxation rate, which scales as 1/𝑁, could be evaluated
explicitly in special cases where solution of the linearized
Vlasov equation about the equilibrium is known exactly
(such as [9]). This is a topic of future research.
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