ANALYSIS OF PARTICLE NOISE IN A GRIDLESS SPECTRAL POISSON SOLVER FOR SYMPLECTIC MULTIPARTICLE TRACKING

C. E. Mitchell*, Ji Qiang, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

Gridless symplectic methods for self-consistent modeling of space charge in intense beams possess several advantages over traditional momentum-conserving particle-in-cell methods, including the absence of numerical grid heating and the presence of an underlying multi-particle Hamiltonian. Despite these advantages, there remains evidence of irreversible entropy growth due to numerical particle noise. For a class of such algorithms, a first-principles kinetic model maintain attribution of the numerical particle noise is obtained and applied to gain insight into noise-induced entropy growth and thermal relaxation.

INTRODUCTION

must Distinguishing between physical and numerical emittance growth observed in long-term tracking of beams with space charge is critical to understanding beam performance at high intensities. Numerical emittance growth has been modeled of this as a collisional increase of the beam phase space volume driven by random noise caused by the use of a small number of macroparticles, and intimately related to the beam entropy [1]. Recently, several authors have developed methods for multiparticle tracking (in plasmas or beams) using ≥variational or explicitly symplectic algorithms designed to preserve the geometric properties of the self-consistent equa- $\widehat{\mathfrak{D}}$ tions of motion [2–4]. The multi-particle symplectic algo- $\stackrel{\text{$\widehat{\sim}$}}{\sim}$ rithm described in [4] is sufficiently simple that field fluctua- $^{\textcircled{0}}$ tions and emittance growth on a single numerical step can be g studied analytically [5]. In this paper, we develop a kinetic formalism to better understand the dynamical evolution of 3.0 particle noise in this and similar algorithms.

SYMPLECTIC SPECTRAL ALGORITHM

terms of the CC BY We extend the algorithm described in Section III of [4] to treat the Poisson equation in a general bounded domain $\Omega \subset$ \mathbb{R}^d ($d \leq 2$) with conducting boundary $\partial \Omega$. The symplectic map describing a numerical step in the path length coordinate $\underline{2}$ t is performed by applying second-order operator splitting

to the following multi-particle Hamiltonian:

$$H_N = \sum_{j=1}^N H_{\text{ext}}(\vec{r}_j, \vec{p}_j, t) + \frac{1}{2N} \sum_{j,k=1}^N G(\vec{r}_j, \vec{r}_k). \quad (1)$$

Here H_{ext} is the single-particle Hamiltonian in the external applied fields, N denotes the number of simulation particles, Content from this work and G denotes a two-body interaction potential, given by:

$$G(\vec{r},\vec{r}') = -\sum_{l=1}^{M} \frac{n}{\lambda_l} e_l(\vec{r}) e_l(\vec{r}'), \qquad (2)$$

è

where M denotes the number of computed modes and n is a space charge intensity parameter. The smooth functions e_l (l = 1, 2, ...) form an orthonormal basis for the space of square-integrable functions on the domain Ω , and satisfy:

$$\nabla^2 e_l = \lambda_l e_l, \quad e_l|_{\partial\Omega} = 0, \quad (\lambda_l < 0). \tag{3}$$

It follows from (1-3) that each particle moves in response to a space charge potential U satisfying the Poisson equation:

$$\nabla^2 U = -\rho, \quad U|_{\partial\Omega} = 0, \tag{4}$$

where ρ is a particle-based approximation to the beam density, given by taking the first *M* modes:

$$\rho = \sum_{l=1}^{M} \rho^{l} e_{l}, \quad \rho^{l} = \frac{n}{N} \sum_{j=1}^{N} e_{l}(\vec{r}_{j}).$$
(5)

Due to the factorized form of the interaction (2), the computational complexity of each timestep is ~ O(NM).

STATISTICAL APPROACH

Neglecting the error due to finite timestep, and holding the number of modes M fixed, the system of particles is described by the N-body Hamiltonian (1). For simplicity, consider a constant focusing system, so that H_{ext} in (1) is independent of t. Assume that initial particle coordinates $z_i = (\vec{r}_i, \vec{p}_i), j = 1, \dots, N$ are randomly sampled from a probability density f_0 on the single-particle phase space. The joint probability density on the N-body phase space describing the particles at t = 0 is:

$$P_N(z_1, \dots, z_N; 0) = \prod_{j=1}^N f_0(z_j).$$
 (6)

The evolution of the joint probability density is governed by the Liouville equation $\partial P_N / \partial t + \{P_N, H_N\} = 0$, and we are interested in the single-particle density function f:

$$f(z,t) = \int P_N(z,z_2,\ldots,z_N;t)dz_2\ldots dz_N.$$
(7)

This can be obtained from the BBGKY hierarchy obtained from (1), or by studying the Klimontovich density:

$$f_K(z,t) = \frac{1}{N} \sum_{j=1}^N \delta(z - z_j(t)),$$
(8)

where $(z_1(t), \dots, z_N(t))$ is an orbit of (1) with random initial condition sampled from (6). It follows that $f = E[f_K]$.

Given any density function h on the single-particle phase space, we define a single-particle Hamiltonian $H_{MF}[h]$ by:

$$H_{MF}[h] = H_{\text{ext}} + H_{SC}[h], \qquad (9a)$$

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

ChadMitchell@lbl.gov

where $H_{SC}[h]$ is the mean-field potential associated with *h*, given in terms of the interaction (2) by:

$$H_{SC}[h](\vec{r}) = \int G(\vec{r}, \vec{r}')h(z')dz', \quad \vec{r} \in \Omega.$$
(9b)

It follows from (1) and Hamilton's equations that f_K in (8) satisfies:

$$\frac{\partial f_K}{\partial t} + \{f_K, H_{MF}[f_K]\} = 0.$$
(10)

Note that (10) is interpreted to hold after integrating against a smooth test function of compact support [6].

KINETIC EQUATIONS

We desire an equation for the single-particle density f. Denote $f = E[f_K]$ and $\delta f = f_K - f$. It follows from (10) that:

$$\frac{\partial f}{\partial t} + \{f, H_{MF}[f]\} = \mathbf{E}\{H_{SC}[\delta f], \delta f\}.$$
(11)

Note that (11) corresponds to the lowest-order equation in the BBGKY hierarchy. It is exact, but it is not closed due to the appearance of δf .

The hierarchy can be closed [7,8] by noting that for longrange interactions, $\delta f \sim O(1/\sqrt{N})$. Defining $g = \sqrt{N}\delta f$, subtracting (10) from (11), and evaluating the resulting equation for g to leading order in 1/N gives the coupled pair of kinetic equations:

$$\frac{\partial f}{\partial t} + \{f, H_{MF}[f]\} = \frac{1}{N} \mathbb{E}\{H_{SC}[g], g\},$$
(12a)

$$\frac{\partial g}{\partial t} + \{g, H_{MF}[f]\} + \{f, H_{SC}[g]\} = 0,$$
(12b)

where g is the Gaussian random field satisfying at t = 0:

$$\mathbf{E}[g_0] = 0, \quad \mathbf{E}[g_0(z)g_0(z')] = \delta(z-z')f_0(z) - f_0(z)f_0(z').$$

The system (12) is our fundamental model. In the limit $N \rightarrow \infty$, we recover the Vlasov equation for the interaction (2). The term on the right-hand side of (12a) describes the effect of the fluctuation *g* associated with the initial random sampling, which propagates according to the linearized Vlasov equation (12b). The statistics of g_0 follow from (6).

Perturbation Around Vlasov Equilibrium

Let f_1 denote a stationary solution of (12a) with $N \to \infty$ (a Vlasov equilibrium). We analyze (12) perturbatively by taking $f = f_1 + \frac{1}{N}f_2 + ...$ and $g = g_1 + \frac{1}{N}g_2 + ...$ Using these expressions in (12) and equating terms of like order in 1/N gives a sequence of *linear* equations for the f_j , g_j , j = 1, 2, ... describing deviations from Vlasov equilibrium of successively higher order in 1/N. In particular, let *L* denote the linear operator:

$$Lh = \{h, H_{MF}[f_1]\} + \{f_1, H_{SC}[h]\}.$$
 (13)

Then the leading correction f_2 is obtained by solving:

$$\frac{\partial f_2}{\partial t} + Lf_2 = \mathbb{E}\{H_{SC}[g_1], g_1\}, \quad \frac{\partial g_1}{\partial t} + Lg_1 = 0, \quad (14)$$

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

with initial conditions $f_2 = 0$ and $g_1 = g_0$ at t = 0.

In some cases, the solution of the rightmost equation in (14) is known explicitly. For a clear 1D example with applications to particle noise, see [9]. In this case, we write $g_1(t) = e^{-tL}g_0$, suppressing the dependence on z. Then f_2 is given by:

$$f_2(t) = \int_0^t e^{-(t-\tau)L} \mathbf{E} \{ H_{SC}[e^{-\tau L}g_0], e^{-\tau L}g_0 \} d\tau.$$
(15)

Energy, Entropy, and Observables

Under the assumption that H_{ext} is independent of *t*, the Hamiltonian (1) is an invariant of *N*-body motion. Taking the limit H_N/N as $N \to \infty$ gives the statistical energy:

$$Q = \int H_{\text{ext}}(z)f(z)dz + \frac{1}{2}\int f(z)G(\vec{r},\vec{r}')f(z')dzdz'.$$
 (16)

Likewise, the Boltzmann entropy is defined as [1]:

$$S = -k_B \int f(z) \ln f(z) dz. \tag{17}$$

Using (14), we obtain the following expression for the growth rate of the beam entropy, valid to first order in 1/N:

$$\frac{dS}{dt} = \frac{k_B}{N} \int \mathbf{E} \{ H_{SC}[e^{-tL}g_0], e^{-tL}g_0 \} \ln f_1 dz.$$
(18)

If ϕ is a function on the single-particle phase space, we let $\langle \phi \rangle = \frac{1}{N} \sum_{j=1}^{N} \phi(z_j)$. Then $\mathbb{E}[\langle \phi \rangle] = \int \phi(z) f(z) dz$.

RELAXATION TO EQUILIBRIUM

The unique *f* maximizing (17) for fixed (16) is the selfconsistent Boltzmann distribution $f_{eq} \propto e^{-H_{MF}[f_{eq}]/k_BT}$. We study relaxation to f_{eq} for a beam initially described by a self-consistent waterbag distribution of the form:

$$f_0 \propto \Theta(H_0 - H_{MF}[f_0]), \tag{19}$$

in a constant-focusing channel $H_{\text{ext}} = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}k^2(x^2 + y^2)$. Note that (19) is a stationary solution of (12a) in the limit $N \to \infty$. A 2.5 MeV proton beam with 120 mA current is used, with *k* and H_0 chosen to give $\epsilon_{x,n} = \epsilon_{y,n} = 0.6 \ \mu\text{m}$ and $\sigma_x = \sigma_y = 3.8 \ \text{mm}$. 5-20K particles initially sampled from (19) are tracked with space charge using 128×128 spectral modes in a rectangular domain Ω of side 3.4 cm.

To study relaxation of the distribution, we use a momentum kurtosis parameter, as used in [10]:

$$\kappa = \frac{\langle p_x^4 \rangle + \langle p_y^4 \rangle}{2(k_B T)^2} - 2, \qquad k_B T = \frac{\langle p_x^2 \rangle + \langle p_y^2 \rangle}{2}, \qquad (20)$$

where $\kappa \approx 0.21$ for f_0 (waterbag) and $\kappa = 1$ for f_{eq} (Boltzmann). Fig. 1 shows the evolution of κ as a function of t (in betatron periods $L = 2\pi/k$) for N = 5K. The growth to saturation is reasonably described by $\kappa(t) = 1 - e^{-t/\tau}(1 - \kappa_0)$ for relaxation time $\tau = 4,750$ (blue). Fig. 2 illustrates the initial and final particle distributions in momentum space.

The relaxation rate is given in terms of the beam moments near t = 0 by:

$$\frac{1}{\tau} = \left. \frac{1}{1-\kappa} \left(\frac{1}{(k_B T)^2} \frac{d}{dt} \langle p_x^4 \rangle - \frac{2}{k_B T} (\kappa + 2) \frac{d}{dt} \langle p_x^2 \rangle \right) \right|_{t=0},$$
WEPTS079

where we have used the isotropy of the momentum distribu-The where we have used the isotropy of the momentum distribu-is tion. Using (14-15), one may obtain an expression for the strate of change of an observable ϕ to leading order in 1/N: $\frac{d}{dt}\langle\phi\rangle\Big|_{t=0} = \frac{1}{N}\int E\{\phi, H_{SC}[g_0]\}(z)g_0(z)dz.$ (21) Using the expression for g_0 and applying (2) gives: $\frac{d}{dt}\langle\phi\rangle\Big|_{t=0} = \frac{1}{N}\sum_{l=1}^{M}\frac{n}{\lambda_l}\int\{f_0,\phi\}\left(\rho_0^le_l - \frac{1}{2}e_l^2\right)dz,$ (22) where ρ_0^l denotes the coefficient of mode l in the initial ag spatial density. Using (22) in the expression for $1/\tau$ gives

$$\left. \frac{d}{dt} \langle \phi \rangle \right|_{t=0} = \frac{1}{N} \int \mathbf{E} \{\phi, H_{SC}[g_0]\}(z) g_0(z) dz.$$
(21)

$$\left. \frac{d}{dt} \langle \phi \rangle \right|_{t=0} = \frac{1}{N} \sum_{l=1}^{M} \frac{n}{\lambda_l} \int \{f_0, \phi\} \left(\rho_0^l e_l - \frac{1}{2} e_l^2 \right) dz, \quad (22)$$

 \underline{P} spatial density. Using (22) in the expression for $1/\tau$ gives 2 a contribution from each spectral mode that scales linearly

Figure 1: Evolution of (20) showing relaxation of a waterbag beam to Boltzmann equilibrium in a constant-focusing chan-

Boltzmann equilibrium due to numerical particle noise. CONCLUSION A kinetic formalism was developed to describe parti

A kinetic formalism was developed to describe particle noise in a gridless multi-symplectic space charge algorithm $\frac{1}{2}$ [4], resulting in a generalized Lenard-Balescu model with body long-range interaction (2). In a constant focusing channel, WEPTS079

Figure 3: Comparison of kurtosis evolution for N = 5K, 10K, 20K. Slope of each fitted green curve gives the relaxation rate $1/\tau$, illustrating that τ scales linearly with N.

The relaxation rate, which scales as 1/N, could be evaluated explicitly in special cases where solution of the linearized Vlasov equation about the equilibrium is known exactly (such as [9]). This is a topic of future research.

ACKNOWLEDGEMENTS

This work was was supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and made use of computer resources at the National Energy Research Scientific Computing Center.

REFERENCES

- [1] J. Struckmeier, Phys. Rev. ST Accel. Beams, vol. 3, p. 034202, 2000.
- [2] B. A. Shadwick, A. B. Stamm, and E. G. Evstatiev, Physics of Plasmas, vol.21, p. 055708, 2014.
- [3] S. D. Webb, Plasma Phys. Control. Fusion, vol. 58, p. 034007, 2016
- [4] Ji Qiang, Phys. Rev. Accel. Beams, vol. 20, p. 014203, 2017.
- [5] C. Mitchell and J. Qiang, "Analysis of Emittance Growth in a Gridless Spectral Poisson Solver for Fully Symplectic Multiparticle Tracking", in Proc. ICAP'18, Key West, Florida, USA, Oct. 2018, pp. 335-340.
- [6] H. Spohn, Large Scale Dynamics of Interacting Particles, Berlin, Germany, Springer-Verlag, 1991.
- [7] A. Campa et al, Physics of Long-Range Interacting Systems, NY, USA, Oxford University Press, 2014.
- [8] P. Chavanis, *Physica A*, vol. 377, pp. 469-486, 2007 and *Eur*. Phys. J. Plus, vol. 127, p. 19, 2012.
- [9] G. Bassi, J. Ellison, and K. Heinemann, "Equilibrium Fluctuations in an N-Particle Coasting Beam: Schottky Noise Effects", in Proc. PAC'07, Albuquerque, NM, USA, Jun. 2007, paper FRPMN099, pp. 4318-4320.
- [10] C. Benedetti, S. Rambaldi, and G. Turchetti, Physica A, vol. 364, pp. 197-212, 2006.