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Abstract

Wepropose a new approach to the calculations of radiation

and space charge longitudinal forces based on the use of

the integrals for the retarded potentials. Our main result

expresses the rate of change of particles’ energy through

2D (in a 2D model) or 3D integrals for a given orbit of the

beam. It generalizes the 1D model and includes the transient

effects at the entrance and the exit from the magnet. For a

given beam line with known magnetic lattice, and a known

distribution function of the beam, the calculation reduces to

taking 2D or 3D integrals along the orbit.

INTRODUCTION

When the trajectory of a relativistic beam is bent by mag-

netic field, the beam radiates electromagnetic field and ex-

periences a radiation reaction force. A popular 1D model

for this force in the case of a circular motion, often called

the coherent synchrotron radiation (CSR) wake, was devel-

oped in Refs. [1–3]. A generalization of this model for the

case of a bending magnet of finite length has been done in

Refs. [4, 5] and is implemented in several computer codes1.

These models are simple and easy to use but they miss an

important part of the total force in relativistic beams moving

in a curvilinear trajectory.

The attention to this force was attracted by M. Dohlus [6]

in 2002, who pointed out that if the beam is compressed (ei-

ther longitudinally or transversely) the energy of its Coulomb

field changes and this should result in a change of the kinetic

energy of the beam particles. A force that is responsible

for this change can be called the compression force. Note
that this force is different from the radiation reaction force,

because the compression is a reversible process, and if the

beam is decompressed, this force changes sign. It cannot

be associated with what is conventionally called the space
charge force because the latter typically scales as 1/γ2 with
γ the Lorentz factor. The compression-decompression effect
occurs even in the limit γ → ∞ (hence, v = c), when the
space charge force vanishes.

A part of this work has bean developed earlier by this

author in collaboration with D. Ratner [7].

We use the CGS system of units throughout this paper.

∗ Work supported by the Department of Energy, contract DE-AC03-

76SF00515
† stupakov@slac.stanford.edu
1 Here, we only deal with the longitudinal part of the forces in the bunch

that changes particles’ energy in the beam; for the effect of the transverse

force, see Ref. [8].

FORMULA FOR THE LONGITUDINAL
WAKE

The beam is represented by its charge density ρ(r, t) that
depends on time t and coordinate vector r , and its velocity
�(r, t), with the beam current density j given by the product
j = ρ�. Note that in this model assigning a particular value
of � at each point in the beam we neglect the spread in veloc-

ity due the the angular and energy spread in the beam — an

approximation that is typically well satisfied for relativistic

beams. For given functions ρ(r, t) and j(r, t) we then derive
an equation for the electric field in the beam, E(r, t), and
calculate the instantaneous energy change per unit time and

per unit charge

P(r, t) = �(r, t) · E(r, t). (1)

The result is expressed as an integral over the volume around

the beam trajectory at preceding times t ′ < t. It is remark-
able that while the integrand in this integral has a singularity,

it is integrable and is easily treated by standard numerical in-

tegration techniques. This is in contrast to the Green function

approach in traditional simulations of 3D radiation forces

that use a relativistic point charge fields with a strong non-

integral singularity at the location of the charge. We will

loosely call P the longitudinal wake, although the classical
wake fields are typically associated with the energy loss in-

tegrated over the beam path and the transverse cross section

of the beam.

Due to the lack of space we omit the derivation that ex-

presses P in terms of the integrals over the whole space and

give the final result:

P(r, t) = −c
∫

d3r ′

|r ′ − r |
[β(r, t)

−(β(r, t) · β(r ′, tret))β(r ′, tret)] · ∂r′ρ(r ′, tret)

+ c
∫

d3r ′

|r ′ − r |
(β(r, t) · β(r ′, tret))ρ(r ′, tret)∂r′ · β(r ′, tret)

−

∫
d3r ′

|r ′ − r |
ρ(r ′, tret)β(r, t) · ∂tretβ(r

′, tret), (2)

where β = �/c. Note that due to the factor |r ′− r |−1 the inte-
grand has a singularity at r ′ → r , however, this singularity
is integrable2.

In many cases the last two integrals in Eq. (2) can be

neglected. Indeed, the first integral involves the spacial

derivative of ρ that can be estimated as |∂r′ρ| ∼ ρ/σ, where
σ is the characteristic size of the beam. In the last two

integrals we have the spacial and time derivatives of the

2 It is also integrable in a 2D model considered below, when the three

dimensional integration
∫
d3r′ is replaced by a 2D one,

∫
d2r′.
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velocity field in the beam, and these are estimated as |∂r′ ·
β | ∼ 1/L and |∂tretβ | ∼ c/L with L the external scale of

the problem that is determined by the magnetic lattice (L
can usually be associated with the radius of curvature of the

beam orbit). If we assume that the size of the beam is much

smaller than L, σ � L, the last two lines in Eq. (2) will
be typically small. Neglecting them, we arrive to a much

simpler expression for P,

P(r, t) = −c
∫

d3r ′

|r ′ − r |
[β(r, t)

−(β(r, t) · β(r ′, tret))β(r ′, tret)] · ∂r′ρ(r ′, tret). (3)

In next sections, wewill show several illustrative examples

of the wake calculation.

CSR WAKE ON A CIRCULAR ORBIT
The first example is the relativistic motion of a beam on a

circular orbit of radius R specified by the following equations

in the Cartesian coordinate system,

r0(s) = Re1 [1 − cos (s/R)] + Re2 sin (s/R) , (4)

where e1 and e2 are the unit vectors of an orthogonal Carte-
sian coordinate system in the plane of the orbit and s is the
distance along the orbit. Assuming � = c, the normalized
velocity β is this model is equal to the unit tangential vector
to the circle, β(s) = e1 sin (s/R) + e2 cos (s/R) (note that
β does not depend on time). The horizontal coordinate x
is measured in the orbit plane in the direction perpendic-

ular to the orbit so that the vector r(x, s) is specified by
r(x, s) = r0(s)+ xn(s),where n(s) is the unit vector normal
to the trajectory, n(s) = e1 cos (s/R) − e2 sin (s/R) .
The beam distribution function is assumed a 2D Gaussian,

ρ(x, s, t) =
Q

2πσxσz
e
− x2

2σ2
x
−

(s−ct )2

2σ2
z , (5)

with σx and σz the transverse and longitudinal rms sizes
of the beam and Q the beam charge. For calculation of the

wake we used Eq. (3) in which the integration goes in two

dimensions with d2r ′ = dx ′ ds′.
We used the following set of parameters: R = 1 m, σx =
σz = 1 mm. We first show in Fig. 1 the integrand in Eq. (3)

for s = 0, t = 0 as a function of s′ and x ′. Note that

transversely it is localized over the distance of several σx ,
while longitudinally it extends over much larger length. This

longitudinal extension is the formation length of the wake;
it can be estimated from 1D CSR theory as (24R2σz)

1/3 ≈

30 cm and shows a good agreement with the longitudinal

extension of the integrand.

The plot of the wake function on the axis of the beam

x = 0, at t = 0, is shown in Fig. 2. The dashed red line in
this figure is calculated by 1D theory [2, 3]. One can see a

very good agreement of our calculation with 1D even though

the bunch transverse and longitudinal sizes are equal.

Figure 1: Integrand in Eq. (3) (in arbitrary units) as a func-

tions of the coordinates s′ and x ′.

- --
-
-

/

/
/ /

Figure 2: The quantity P normalized by cQ/σ
4/3
z R2/3 is

shown by a black solid line (s = 0 corresponds to the center
of the bunch). For comparison, the dashed red line shows

the CSR wake computed with 1D theory.

TRANSIENT CSR WAKE OF A BEND
MAGNET

In our second example, we consider the problem treated

in Refs. [4,5]. In this problem we assume a bending magnet

of finite length L with the beam trajectory inside the magnet,

− 1
2

L < s < 1
2

L, given by the same Eq. (4). Outside of the
magnet, the beam moves with � = c along straight lines tan-
gential to the circular orbit at the points of entrance and exit,

respectively. The bunch distribution is given by Eq. (5) with

s the length along the orbit and x the horizontal coordinate
perpendicular to the orbit.

We have chosen the same set of parameters as in Ref. [5]:

R = 1.5 m, σz = 50 μm, Q = 1 nC and L = 25 cm. In the
1D model of [5] the parameter σx = 0; in our calculations
we have chosen σx = σz .

We first calculated the wake inside the bunch when it

enters the bend from the straight line. The plot of this wake

at various distances from the magnet entrance edge is shown

in Fig. 3 by solid lines. For comparison, the dashed green

lines show the result of 1D model computed in Ref. [5].

We have also calculated the wake in the bunch after it

exits the bend magnet and continue motion also a straight
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Figure 3: Longitudinal wake in the bunch as a function of

distance from the entrance edge of the bend shown by a

number near each curve. The longitudinal coordinate z in
each case is measured from the center of the bunch.

line and found an excellent agreement of our theory with a

1D model of the CSR wake.

GAUSSIAN BEAMS AND BEAM OPTICS
In the two examples above the beam charge density and

velocity were specified by equations which are verymuch evi-

dent due to simplicity of our model. In practical cases, where

a beam can have an energy chirp and may travel through a

complicated beam line, the calculation of the beam charge

density and velocity is a more difficult problem. In this sec-

tion, using the approach developed in Ref. [9], we will show

how this problem is solved for the case of a beam with a

Gaussian distribution function propagating through a system

that can be described by linear optics. We limit our analysis

to two dimensions — the horizontal and longitudinal ones.

To calculate ρ and � we will use the formalism of the

Vlasov equation. We use the notation x for the horizontal
particle offset relative to the nominal orbit, θ = dx/ds is the
angular slope of the orbit, η = ΔE/E is the relative energy

deviation of the particle, z is the longitudinal coordinate of
the particle in the bunch, and s is the path length along the
nominal orbit. The beam distribution function F(x, θ, z, η, s)
is a function of integrals of motion (see, e.g., [10]); it is

normalized by
∫

Fdx dθ dz dη = 1. We will assume that F
depends on the following three integrals of motions. The

first one is the action connected to the betatron oscillation

in the horizontal plane,

J =
1

2

α2 + 1

βf
(x − Dη)2

+
1

2
βf(θ − D′η)2 + α(x − Dη)(θ − D′η), (6)

where βf(s) is the beta function (not to confuse with the
vector β = �/c and its components βx and βs below),
α(s) = − 1

2
dβf/ds, D(s) is the dispersion function and

D′(s) = dD/ds. The second integral of motion is the en-
ergy deviation η, because we assume that the particle is
not accelerated on the trajectory. Finally, the third integral,

is obtained if one expresses the initial value of the coor-

dinate z (say, at s = 0) though the values of z, η, x and
θ on the orbit using the transport matrix R(s) (see details
in [9]). Since this initial value is a constant, the resulting

expression, which we denote by Z , is an integral of motion.
Using the symplecticity of the matrix R, Z can be written as

Z = z−R56(s)η+ xR26(s)−θR16(s). By construction, Ri j(s)
with i � j are equal to zero at s = 0, where the coordinate
Z is equal to the longitudinal coordinate in the beam z.
For the equilibrium function F we choose a Gaussian

distribution,

F =
Nb

2πε

1

2πσησz0
exp

(
−

J
ε
−
(η − hZ)2

2σ2η
−

Z2

2σ2
z0

)
, (7)

where Nb is the number of particles in the beam at the en-

trance (s = 0), ε is the horizontal emittance, σz0 is the rms
bunch length of the beam at s = 0 and ση is the uncorrelated
energy spread of the beam. The chirp parameter h in this
equation accounts for the correlation between the position

of the particle in the bunch and its energy.

By integrating F we can find the two-dimensional charge

density of the beam, ρ(x, z, s) = e
∫

Fdθ dη and its trans-
verse velocity βx(x, z, s) = e

ρ(x,z,s)

∫
Fθdθ dη,where we as-

sume a relativistic beam, and use the approximation �x ≈ cθ
for the particle velocity. Because of the explicit dependence

of the distribution function F versus the variables θ and η,
this integration can be carried out analytically. Here we

present the result of the integration for a special case3 when

R̂16(s) = R̂26(s) = 0,

ρ(x, z, s) =
eNb

2πΣ
exp

(
−

A
2Σ2

)
, βx(x, z, s) =

B
Σ2
, (8)

where

A = z2
(
βε + D2

(
h2σ2z0 + σ

2
η

))
− 2CDxz + E x2,

B = zε(αD + βD′)C + DD′σ2ησ
2
z0x − αxεE,

C = h2R56σ2z0 + hσ2z0 + R56σ2η,

E = (hR56 + 1)2σ2z0 + R2
56σ

2
η, (9)

and

Σ2 = D2σ2ησ
2
z0 + βfε

[
(hR56 + 1)2σ2z0 + R2

56σ
2
η

]
. (10)

In Eqs. (8) we need to substitute z = s − ct; this makes
ρ and βx functions of x, s and time t. After that, Eqs. (8)
can be used to calculate the wake (2). Typically, we assume

that βx � 1 and treat βx as of the first order. Neglecting the
second order terms we also use the approximation βz ≈ 1.

3 Strictly speaking, for non-vanishing dispersion D, R̂16(s) and R̂26(s)
cannot be identically equal to zero. This follows from the symplecticity

of the transport matrix. We present this case here only to illustrate the

method of calculations.
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