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Abstract 
We consider the ponderomotive instability of two super-

conducting RF cavities self-driven from a single RF source 
with vector-sum control. 

CAVITY TUNING 
Slater[1] gave the relation between changes in the stored 

energy and the natural frequency for EM fields in a metal-
lic cavity when the boundary is perturbed: 

[1-(ωc/ωc0)2] = 

The sources of volume change (ΔV) are: (i) the cavity 
tuner; (ii) Lorentz Force Detuning (LFD); and (iii) micro-
phonics. All three disturbances act through the agency of 
the cavity mechanical modes. Schulze[2] gives a concise 
introduction to mechanical eigenmodes and generalized 
coordinates q. The dynamical response of each mode, in-
dex μ, is governed by an equation of the form: 

We assume that the cavity has axial symmetry, and that the 
mechanical and electromagnetic modes can each be 
grouped into transverse and longitudinal modes.   

 Mechanical Tuner 
Provided that the tuner does not break the symmetry, 

then it couples only to the longitudinal mechanical modes 
(MM). This is true for the TESLA-style cavity, provided 
there is no buckling. It would be untrue if a pill-box cavity 
were tuned by a piston at the radial boundary.  

Lorentz Force Detuning (LFD) 
There are currents and charges on the interior (metallic) 

surface of the cavity (true for NC and SC, but different 
depths). These are acted upon by the electric (E) and mag-
netic (H) fields via the Lorentz force F = q(E + v × B). 
Because the cavity normal mode determines the spatial 
configuration of both the charges /currents and the fields, 
the resultant Lorentz pressure is P = (μ0|H|2-ε0|E|2)/4. 
Apart from the squaring, this radiation pressure has the 
same spatial pattern as the cavity fundamental EM mode 
being used for acceleration of the particle beam. If the fun-
damental mode has axial symmetry, then LFD will couple 
only to the longitudinal MMs; and when high radiation 
pressure coincides with anti-nodes of the MM, coupling is 
strong. The changes (ΔV) in the mechanical shape result-
ing from pressure are used to find the Electro-Magnetic 
(EM) resonance frequency change. The static response to 
the Lorentz pressure is the sum of the DC response of all 

the mechanical modes of the cavity, acting collectively. 
Schulze seems to imply (from fundamental principles) that 
in general (i.e. always) the static detuning satisfies 
ωc(|E|>0) < ωc(|E|=0); and that the contributions from indi-
vidual mechanical modes is also negative. This is con-
firmed by measurement on a real cavity, or computer sim-
ulations (CST, COMSOL, etc). Because H is proportional 
to E, it is usual to write the resonant frequency as a function 
of E2: (ωc-ωc0)/(2π) = - |k|E2

. 

Noise/Vibration Sources 
Noise/vibration sources may enter into the cavity RF 

wave in two ways: either modulating the waveform before 
it enters the cavity, or acting inside the cavity through so-
called “microphonics”. 

External RF modulations Each SRF cavity in the TRI-
UMF ARIEL E-linac has two coaxial-type input couplers. 
The inner conductor is a cantilever, and prone to vibration. 
Displacement of the conductor changes the impedance, 
leading to an impedance mismatch and modulation inci-
dent RF wave. The high-power couplers are cooled with 
forced air: the impulsive and turbulent flow producing 
noise-like vibrations from 20 to 300 Hz that are imprinted 
on the arriving RF wave via the mechanism of impedance 
modulation.  

Microphonics 
These are mechanical vibrations that change the cavity 

shape, resulting in changes in the EM resonance frequency. 
(Note, there are also vibrations which change the cavity 
shape but do not change the resonance frequency.) There 
are many sources: 

• Acoustic noise from fluids, gases, turbulence,
bubbles 

• Mechanical disturbance from rotary and recipro-
cating equipment, passing vehicular traffic, etc. 

If the vibrations have spatial/directional and temporal 
overlap with the mechanical modes, then coupling occurs; 
but not necessarily to the EM mode. The MM has also to 
couple to the EM mode for the vibration to have an effect. 

The fundamental electrical mode typically has no azi-
muthal dependence. In principle, there should be exactly 
zero coupling to the transverse MMs. The frequency 
change resulting from the linear part of the mechanical dis-
placement is indeed zero – because there are equal and op-
posite linear displacements on opposite walls. But there is 
a 2nd order change in the volume proportional to mode dis-
placement squared which gives a non-zero contribution 
when multiplied by the radiation pressure distribution. 

The fundamental EM mode has cylindrical symmetry – 
it cannot tell difference between left, right, up, down; but 
can tell difference between short and long. The conse-
quence of this: for longitudinal (transverse) MMs: the RF 

 ___________________________________________  

* TRIUMF receives funding via a contribution agreement with the
National Research Council of Canada 

† shane@triumf.ca 

10th Int. Particle Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-THPRB008

THPRB008
3812

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T27 Low Level RF



frequency modulation is equal (twice) the mechanical fre-
quency. If a transverse MM is excited at frequency Ω, then 
the time variation of the EM resonance is Δω.Cos(2Ω t). 
This frequency doubling makes it difficult for a mode to 
participate in an RF instability; because, for instability to 
occur, all parts of the system have to oscillate at the same 
frequency. Thus longitudinal (transverse) mechanical 
modes couple strongly (weakly) to the fundamental EM 
mode, leading to 1st order and 2nd order effects, respec-
tively. This being so, it is the longitudinal MMs that will 
participate in a ponderomotive instability. 

The mode spectrum of transverse MMs is denser than 
the longitudinal, particularly at low frequency. Thus struc-
ture vibrations tends to be dominated by the transverse, but 
not the RF modulation spectrum. In contrast, the longitudi-
nal MM spectrum is sparse at low frequency and the noise 
sources tend to roll off at higher frequency; but these 
modes respond strongly. The signature of a longitudinal 
mode is that when you excite it, say with an external 
shaker, the cavity response is large, RF may unlock or trip. 

Thus, to good approximation, the static and dynamic 
LFD is dominated by the longitudinal mode spectrum – and 
this facilitates predictions based on a small number of 
MMs. For TESLA-like structures there are modes at 
roughly 40 (weak) and 160 Hz and two more between 200 
and 300 Hz. 

PONDEROMOTIVE INSTABILITY 
SRF experts (including this author) use the term pon-

deromotive to mean an instability mediated by dynamic 
LFD.  The static Lorentz force detuning results in a lower-
ing of the EM resonance frequency, and an increase/reduc-
tion of the cavity amplitude depending as the drive fre-
quency ω is below/above resonance ωc. Let TanΨ ≈ (ωc – 
ω)τc where τc is the cavity EM time constant. 

If the static LFD (Δωc = -|kμ|V02) is not compensated 
by the tuner, the self-consistent voltage is the solution of a 
cubic equation and is limited by the available generator 
voltage. But, in the limit of small coupling [Δωc×τc <<1], 
there is an approximate form:  𝑉ଶ = Cosሾ𝛹ሿଶ𝑉ଶ ൫1 + 2Cosሾ𝛹ሿଷSinሾ𝛹ሿ𝑘ఓ𝑉ଶ 𝜏 ൯ 

The Lorentz force acting on the inner surface of the RF 
cavity couples the EM resonator to a mechanical mode. 
Think of the cavity voltage V(t)× Exp[iωt] as having been 
demodulated to baseband, leaving V(t). The MM behaves 
as a driven oscillator in the coordinate Δωc with external 
drive proportional to V2(t)≈ V02[1+2a] where a(t) is the 
modulation index. In the presence of the MM, and only in 
that case, the EM resonator behaves as a parametric reso-
nator in the coordinate V, with equation of motion 
τcdV/dt+[1- jTanΨ- jΔω(t)τc]V=Vg and Δω = -|kμ|V2. The 
linearized form of the equations correctly predicts the 
threshold for instability and the growth rate for small am-
plitudes. For large amplitudes, additional phenomena such 
as limit cycles may appear.  

In the monotonic instability, the almost steady state re-
sponse of the EM and mechanical mode is exploited: the 
resonance frequency falls, the cavity voltage changes ac-

cording to the derivative of the resonance curve w.r.t. fre-
quency: voltage falls/rises above/below resonance, respec-
tively, leading to corresponding changes in the DC excita-
tion of the MM. Hence perturbations above/below are self-
limiting/regenerative, respectively. The EM resonator re-
sponse is Cos[Ψ], the derivative is Sin[Ψ], so simplistically 
we expect the instability threshold to scale as 1/(Cos[Ψ] 
Sin[Ψ]) when Ψ>0. During the instability, the EM field per-
forms mechanical work on the cavity, changing its shape. 
The instability is “slow” compared with the EM and me-
chanical filling times. For the large amplitude motions, the 
cavity resonance frequency will slide toward the drive fre-
quency.  

In the oscillatory instability, the EM resonator pumps 
the mechanical resonator and visa versa. For the coupling 
to be effective, the amplitude modulation (AM) frequency 
has to be within the bandwidth of the MM, and the fre-
quency modulation of the RF cavity (induced by the MM) 
has to be within the bandwidth of the EM mode. During an 
oscillation of the MM, the cavity resonance moves up and 
down in frequency, leading to changes in the amplitude re-
sponse. But it is equivalent and simpler to think of the res-
onance as fixed and the RF drive as being frequency mod-
ulated. In this picture, the RF cavity is alternately driven at 
upper and lower sidebands (ω±Ω), Ω being the MM fre-
quency. The net effect depends on the filling times of the 
EM and MM resonator, and also on whether both side 
bands are on the same side of resonance or whether they 
straddle the EM resonance. Above/below resonance, the 
lower sideband excites/damps and the upper sideband 
damps/excites. Differencing of the sidebands leads to a net 
excitation which is proportional to Cos(Ψ+Ωτc)- Cos(Ψ-
Ωτc) ≈ -2 |Ωτc|SinΨ for small values.  Hence the oscilla-
tory instability occurs above resonance (i.e. Ψ<0). 

In the parlance of “sidebands”, the monotonic instability 
is single sideband with frequency offset tending to zero. 

It is noteworthy that the linearized theory predicts which 
side of the EM resonance these instabilities occur; it is 
simply the derivative of the resonance curve (w.r.t. fre-
quency) which counts, and this changes sign: positive be-
low and negative above resonance.  There is no need to in-
voke non-linear mechanisms to introduce this behaviour. 

TWO-CAVITY SYSTEM 
Consider two SRF cavities each self-excited excited with 

loop phases Θ1 and Θ2, under vector sum control. The loops 
share a common feedback point where the quadrature sig-
nal B(t) is injected. Following from Delayen [3] and the 
exposition [4], the system matrix is P= 

Acting on the system vector  
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𝒖 = {𝑎୴ଵ, δωଵ, δωμଵ, 𝑎, dB, 𝑎୴ଶ, δωଶ, δωμଶ} 
The product P.u is a set of equations arranged as a column 
vector that is equal to the 0. We adopt the notation of 
Ref.[4]. Θ1 and Θ2 relate the individual cavity resonance 
frequency (ωc1, ωc2) to the self-excitation frequency ω. Ψ1 
and Ψ2 relate the individual cavity resonance frequency to 
the reference frequency ωr. When the cavities become 
locked, ω=ωr.  

In principle, Θ1 and Θ2 are similar but may be unequal; 
and likewise for Ψ1 and Ψ2. In the case of the E-linac 
EACA, the power divider introduces phase shifts depend-
ing on the steady state power split between the cavities and 
so Θ1 and Θ2 must be re-adjusted.  

For simplicity, we shall take Θ1 = Θ2 =Θ and Ψ1 = Ψ2 
= Ψ. The characteristic determinant factorizes into the 
product of two polynomials: a cubic and quartic in the La-
place frequency variable s. The cubic contains terms in KL 
and Ψ. The quartic contains terms in KL, Θ and Ψ. The cu-
bic/quartic is the same as for an RF cavity with/without 
control loops. Both these cases were treated in [4]. In the 
case that the phases are all properly adjusted and near zero, 
the quartic (with control loops) is more stable. However, 
this is not necessarily trivial to arrange and may be dis-
turbed by additional detunings from other mechanical 
modes (a.k.a. microphonics). 

Thus, the vector sum control leads to a behavior in which 
there are two virtual cavities, one less stable than the other. 
This comes as no surprise, vector sum control is under-de-
termined: there are more variables than control parameters. 
It will not change the characteristic equation, but we may 
make a linear transform to sum (𝑎௩ = 𝑎୴ଵ + 𝑎୴ଶ, etc) and 
difference (δa௩ = 𝑎୴ଵ − 𝑎୴ଶ, etc) variables; and in terms 
of these the system matrix takes on block diagonal form, 
with each block a virtual cavity. 

Our model does not contain local tuning control of the 
individual cavities. [This happens to be a good approxima-
tion to the ARIEL E-linac Accelerator Cryomodule, which 
currently has slow tuning of near-DC offsets; but is being 
upgraded to fast tuning with piezo crystals.] Based on ex-
perience with the generator driven (GD) case, we would 
expect this to lead to an increase of the instability thresh-
olds provided that the tuner is fast compared with the cav-
ity (loaded) time constant. 

Routh Determinant 
Formulae were provided in Ref.[4] for the stability cri-

teria arising from the condition that polynomial coeffi-
cients and Routh determinants all be positive. Here we dis-
play results graphically, Figs.1-4, for the 4th determinant  of 
the quartic for a variety of conditions. Left and right images 
in each figure are low and high Lorentz coupling, respec-
tively; influence of control loops is evident. 

CONCLUSION 
The E-linac ponderomotive instability [5], can be un-

derstood as a consequence of vector sum control. 

Figure 1: RH4 in Ψ,Θ plane. Coloured areas unstable. Clas-
sic oscillatory condition is upper left quadrant: high fre-
quency side TanΨ<0 and SinΘ>0. Heavily loaded regime 
τcΩ=1. Small control loop gains. 

Figure 2: RH4 in Ψ,Θ plane. Cream-coloured areas stable. 
Heavily loaded regime τcΩ=1. Large control loop gains. 
Stable area increased, compared with Fig. 1. 

Figure 3: RH4 in Ψ,Θ plane. Coloured areas stable. Un-
loaded regime τcΩ=Q (mechanical). Small control loop 
gains. 

Figure 4: RH4 in Ψ,Θ plane. Left: cream-coloured areas 
stable. Right: white areas stable. Unloaded regime τcΩ=Q 
(mechanical). Large control loop gains. Stable area re-
duced compared with Fig. 3. 
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