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Abstract
We study the radiation of a bunch moving along the axis

of a circular corrugated waveguide filled with dielectric. It
is assumed that Cherenkov effect takes place in the filling
medium. We consider the “long-wave radiation” with wave-
lengths much larger than the corrugation period. The exact
boundary conditions on the complicated periodic surface
are replaced with the equivalent boundary conditions which
should be fulfilled on the smooth surface. Analytical and
numerical results for the mode frequencies and amplitudes
are presented.

INTRODUCTION
One of conventional methods of microwave radiation gen-

eration is excitation of electromagnetic waves by a charged
particle bunch moving in a periodic metallic waveguide. As
a rule, researchers consider the range of wavelengths which
are comparable to or less than the period of the structure
(Smith-Purcell radiation). However, it is interesting as well
principally different situation when the wavelengths under
consideration significantly exceed the period of the struc-
ture [1–4]. In these cases the periodic conductive structure
can be approximately described with help of so-called aver-
aged boundary conditions for a grid waveguide [1] or equiv-
alent boundary conditions (EBC) for a corrugated waveg-
uide [2–5] (EBC are known also as Vainstein-Sivov condi-
tions). These conditions should be fulfilled on the smooth
surface instead the real waveguide wall.

The problems with corrugated waveguide were analyzed
earlier, for example, in [2, 3] where authors examined the
electromagnetic field of a charge moving along the axis of
an empty round waveguide with a finely corrugated wall.
The similar problem was also researched in [4], where we
investigated some important aspects which were not noted
earlier. In particular, in [4] the dependence of the radiation
properties on the charge velocity has been analyzed. Under-
line that the paper [4] includes the comparison of theoretical
results and results of COMSOL Multiphysics simulations
as well. We have demonstrated that the EBC are applicable
even for situation when the excited wavelength is more than
the structure period in 10 times only.

Here we analyze an analogous problem for the waveguide
with corrugated wall and dielectric filling under condition
that Cherenkov effect takes place. Due to this fact the radia-
tion differs significantly from the one in the vacuum structure.
At the same time, the radiation has essential distinctions from
the one in the dielectric waveguide with smooth wall [6–8].
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EQUIVALENT BOUNDARY CONDITIONS
We consider a circular waveguide having a wall with rect-

angular corrugation (Fig. 1). The waveguide is filled with
a nondispersive isotropic dielectric having permittivity 𝜀,
permeability 𝜇, and refractive index 𝑛 = √𝜀𝜇. The period
of corrugation 𝑑 and the depth 𝑑3 are assumed to be much
less than the waveguide radius 𝑎 and the wavelengths under
consideration 𝜆:

𝑑 ≪ 𝑎, 𝑑3 ≪ 𝑎, 𝑑 ≪ 𝜆, 𝑑3 ≪ 𝜆. (1)

Figure 1: Longitudinal section of the waveguide.

The equivalent boundary conditions for Fourier-
transforms of the electric and magnetic fields have the
following view [5]:

𝐸𝜔𝑧∣𝑟=𝑎 = 𝜂𝑚𝐻𝜔𝜑, 𝐸𝜔𝜑∣𝑟=𝑎 = 𝜂𝑒𝐻𝜔𝑧, (2)

where 𝜂𝑚 and 𝜂𝑒 are the “impedances” which are imaginary
for perfectly conductive structures (we use cylindrical coor-
dinates 𝑟, 𝜑, 𝑧). In the case of the structure shown in Fig. 1,
we have [5]

𝜂𝑚=𝑖𝜔𝑛
𝑐 (𝑑2𝑑3

𝑑 −
𝛿𝛼2

𝑧
1 − 𝛼2

𝜑
) , 𝜂𝑒=−𝑖𝜔𝑛

𝑐 𝛿 (1−𝛼2
𝜑) , (3)

where 𝑑2 is the width of groove, and 𝛼𝜑, 𝛼𝑧 are directing
cosines of the incident wave with respect to ⃗𝑒𝜑 and ⃗𝑒𝑧 ac-
cordingly: 𝛼𝜑 = 𝑘0𝜑/𝑘0, 𝛼𝑧 = 𝑘0𝑧/𝑘0 ( ⃗𝑘0 is the wave vector
of the incident wave, 𝑘0 = 𝜔𝑛/𝑐). The parameter 𝛿 is
determined with use of certain system of transcendent equa-
tions [4, 5]. In the case of the diaphragm system (𝑑1 → 0),
the formula for 𝛿 is known [5]:

𝛿 = 𝑑3 − 𝑑
𝜋 ln [cosh (𝜋𝑑3

𝑑 )] . (4)
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WAKEFIELD
We consider the field of the charged particle bunch moving

along the waveguide axis (𝑧-axis) with the velocity ⃗𝑉 = 𝑐𝛽 ⃗𝑒𝑧.
It is assumed that the bunch thickness is negligible, and the
charge density is 𝜌 = 𝑞𝛿(𝑥)𝛿(𝑦)𝑓 (𝑧 − 𝑉𝑡) where 𝑓 (𝑧 − 𝑉𝑡)
is the longitudinal distribution of the charge. In this case
𝛼𝜑 = 0, 𝛼𝑧 = 1/(𝑛𝛽), only symmetrical TM-field is excited,
and we can use only the 1st condition (2).

It is assumed that 𝑛𝛽 > 1 i.e. Cherenkov radiation is gen-
erated. Omitting the transformations, we give only the main
results for longitudinal component of the electric field. The
longitudinal component of the total field has the following
form:

𝐸𝑧 = −
𝑞 (𝑛2𝛽2 − 1)

2𝑐2𝛽2𝜀

∞
∫

−∞
𝜔 ̃𝑓 (𝜔)×

× [𝐻(1)
0 (𝑠𝑟) + 𝑅 𝐽0 (𝑠𝑟)] exp (𝑖𝜔𝜁

𝑉 ) 𝑑𝜔, (5)

where 𝜁 = 𝑧 − 𝑉𝑡, 𝑠 = 𝜔
𝑉 √𝑛2𝛽2 − 1,

𝑅 = −
𝐻(1)

0 (𝑠𝑎) − 𝑔 ⋅ 𝑠𝑎 ⋅ 𝐻(1)
1 (𝑠𝑎)

𝐽0 (𝑠𝑎) − 𝑔 ⋅ 𝑠𝑎 ⋅ 𝐽1(𝑠𝑎) , (6)

𝑔 = 𝜀𝜂
𝛼2 , 𝜂 = 𝑛

𝑎 (𝑑2𝑑3
𝑑 − 𝛿

𝑛2𝛽2 ) , 𝛼 =
√𝑛2𝛽2 − 1

𝛽 . (7)

Here ̃𝑓 (𝜔) is the normalised Fourier transform of the longi-
tudinal distribution of the charge. For example, for Gaussian
bunch

𝑓 (𝜍) =
exp (−𝜁2

2𝜎2 )

√2𝜋𝜎
, ̃𝑓 (𝜔) = exp (− 𝜔2𝜎2

2𝛽2𝑐2 ) . (8)

The mode frequencies 𝜔𝑚 are determined by the disper-
sion equation

𝐽0 (𝑠𝑎) = 𝑔𝑠𝑎𝐽1(𝑠𝑎). (9)

Calculation of the contribution of these poles in (5) gives
the following expression for the wave field (so called “wake-
field”) which exists behind the bunch:

𝐸𝑊
𝑧 =

∞
∑
𝑚=1

𝐸0𝑚𝑧 cos (Ω𝑚
𝜁

𝑎𝛽) Θ(−𝜁), (10)

𝐸0𝑚𝑧 = ̃𝑓 (𝜔𝑚) 𝑊𝑚𝐽0 (𝛼 Ω𝑚
𝑟
𝑎) , (11)

𝑊𝑚=−
2𝜋𝑞𝛼2Ω𝑚 [𝛼𝑁0 (𝛼Ω𝑚) −𝜀𝜂Ω𝑚𝑁1 (𝛼Ω𝑚)]

𝜀𝑎2𝐽1 (𝛼Ω𝑚) [𝛼2 + (𝜀𝜂Ω𝑚)2]
,

(12)
where Ω𝑚 = 𝑎𝜔𝑚/𝑐, 𝐽𝑘(𝜉) and 𝑁𝑘(𝜉) are Bessel and Neu-
mann functions accordingly, Θ(−𝜁) is Heaviside step func-
tion. Naturally, we have the infinite series of propagating
waveguide modes as in the smooth waveguide with dielectric
filling.

It is interesting to compare the field in the corrugated
dielectric waveguide with the field ⃗𝐸(0) generated in the

ordinary smooth waveguide with the same filling [6, 7] (the
values related to a smooth waveguide are designated with
the superscript (0)). Calculations show that 𝑔 > 0 for the
structure under consideration. As one can see from (7), if
𝑛𝛽 is not close to 1 then 𝑔 ≪ 1. In this case one can obtain

Ω𝑚 ≈ Ω(0)
𝑚 (1 − 𝑔) , (13)

where Ω(0)
𝑚 ≈ 𝜇(0)

𝑚 /𝛼 are the dimensionless mode frequen-
cies in the smooth waveguide (𝜇(0)

𝑚 are zeros of the Bessel
function 𝐽0(𝑥)). The relation of the 𝑧-component of the
mode amplitudes on the waveguide axis is

𝐸0𝑚𝑧/𝐸(0)
0𝑚𝑧∣𝑟=0

≈ (1 − 2𝑔)
̃𝑓 (𝑐Ω𝑚/𝑎)
̃𝑓 (𝑐Ω(0)

𝑚 /𝑎)
. (14)

Thus, in the case 𝑔 ≪ 1, the corrugation decreases the mode
frequencies. The corrugation influence on the mode ampli-
tude can be different. On the one hand, the factor (1 − 2𝑔)
decreases 𝑈𝑚, but the second factor in (14) increases this
relation because of decreasing the frequency.

For 𝑔 ≫ 1 one can obtain the following asymptotic for
frequencies:

Ω1 ≈ √2/(𝑔𝛼2),

Ω𝑚 ≈
𝜇(1)

𝑚−1
𝛼 + 1

𝑔𝛼𝜇(1)
𝑚−1

(𝑚 = 2, 3, 4...).
(15)

Here 𝜇(1)
𝑚 are the zeros of function 𝐽1(𝑥). In this case the

mode amplitudes can be larger than amplitudes of the modes
in the smooth waveguide even for the point charge. However,
the case 𝑔 ≫ 1 can be realized for 𝑛𝛽 ≈ 1 only.

Figures 2, 3 demonstrate dependencies of the mode fre-
quencies and amplitudes on the bunch velocity and the di-
electric permittivity. Calculations show that the diaphragm
system (𝑑1 → 0) affects the wave field in the strongest way,
therefore we present results for this structure. One can see
that the corrugation decreases the mode frequencies. Influ-
ence of corrugation on the amplitudes is more complex. If
the bunch is the point charge (𝜎 = 0 ) and 𝑛𝛽 is not close to
1 then all amplitudes are less than in the smooth waveguide.
But for the real bunch with 𝜎 ≠ 0 some modes can be larger
than in the smooth waveguide, as one can see from Fig. 3.
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Figure 2: The mode frequencies (left; in unities 𝑐/𝑎) and amplitudes of 𝑧-components on the waveguide axis (right; in
unities 𝑞/𝑎2) depending on the bunch velocity. Solid curves refer to the corrugated waveguide, and dotted curves refer
to the smooth waveguide. Red, blue, brown, and magenta curves refer to the 1st , 2nd, 3rd, and 4th modes, respectively.
Parameters: 𝑑 = 𝑑3 = 𝑑2 = 0.1𝑎, 𝑑1 = 0 (diaphragms), 𝛿 ≈ 0.022𝑎, 𝜀 = 4, 𝜇 = 1, 𝜎 = 0.3𝑎.

Figure 3: The mode frequencies (left; in unities 𝑐/𝑎) and amplitudes of 𝑧-components on the waveguide axis (right; in
unities 𝑞/𝑎2) depending on the permittivity in the case 𝛽 = 1. Other parameters are the same as in Fig.2.
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