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Abstract 
We calculate the transverse impulse on a test particle as 

a bunch of charged particles beam passes by. It is often as-
sumed, but seldom proven, that the EM field from a beam 
density distribution factored into transverse and longitudi-
nal parts, F and G respectively, has also a factored form 
P(x,y)Q(z). This factorization is not possible for stationary 
charges. Contrastingly, it becomes increasingly accurate 
for ultra-relativistic particle beams. We give a general anal-
ysis, show how to develop the corrections in terms of inte-
grals of F and derivatives of G. What is significant is that 
if we integrate over longitudinal coordinate z to find the 
transverse impulse on a witness charge, the correction 
terms integrate to zero leading to the impulse P(x,y)Inte-
gral[Q(z)] independent of bunch shape. If this result is al-
ready known, this paper serves as a reminder. 

INTRODUCTION 
The space-charge (SC) tune shift and beam-beam (BB) 

tune shift share common origins, but significant differ-
ences. For the SC shift, test particle travels with the beam 
resulting in (i) partial cancellation of the electric and mag-
netic forces; and (ii) effect is continuous rather than impul-
sive. For the BB shift, test particle moves in the opposite 
direction to beam resulting in:(i) addition of electric and 
magnetic forces; and (ii) effect is impulsive whenever two 
bunches pass one another.  

We can point to two regimes for this type of calculation: 
(i) the long bunch regime as typified by the CERN Inter-
secting Storage Rings [1]; and (ii) the short bunch regime 
with longitudinal and transverse dimensions comparable. 
The CERN Large Hadron Collider (LHC) starts to ap-
proach the latter inside the interaction regions (but not at 
the interaction point).  There the longitudinal r.m.s. size is 
σz ≈8 cm, lattice β is around 500 m and normalized emit-
tance ≈4 μm leading to transverse r.m.s. size σr ≈0.05 cm.  

For the model of the incoherent beam-beam interaction 
(a.k.a. weak-strong model), we need the transverse impulse 
imparted to the test particle (in the weak beam) located at 
(x,y,z=0) as a strong-beam bunch passes by. Hence, we 
need the transverse electromagnetic field EM┴(x,y,z, time) 
from a 3D bunch (x,y,z+v.t), and to integrate this over time. 

 This paper is concerned with the regime  σz ~ σr. In the 
case that the density factors as F(x,y)G(z) it transpires that 
the impulse if very similar to the long-bunch case, and in-
creasingly so at high kinematic γ. 

Let v and u be the velocity of the source and observer, 
respectively. The bunch centre is located at (z + v.t)=0, so 
we can replace integral ∫dt with ∫dz/v. 

We break the calculation into two parts: (1) the con-
tributions when the bunch is downstream and upstream of 
the test particle; and (2) when the witness particle is inside 
the bunch. The two parts must be added together. 

FAR-FIELD IMPULSE 
There are fields (outside the charge distribution) ahead 

of and behind the bunch. Moving charges produce electric 
E and magnetic B fields. The force vector is F= E+u×B, 
where u is velocity of observer in laboratory frame.  

For a bunch moving leftward and counter-moving (or 
stationary) test charge, the forces contribute an impulse. 

∫ 𝐹 ⅆ𝑧
𝑧=−∞

𝑧=tail

+ ∫ 𝐹 ⅆ𝑧
𝑧=head

𝑧=∞

When u=v, test charge and beam co-moving, the range of 
integration is invalid; there is no impulse. 

To do these integrals, we replace the bunch by concen-
trated charge at its centroid, and use the expressions from 
Jackson [2] for transformation of the fields of relativistic 
moving charges. Let observer be at distance “x” transverse 
to the trajectory of the moving charges. Let total bunch 
charge be Q and 4πε≡ 1. Let bunch extend from head zh to 
tail zt (moduli). In cylinder coordinates, the fields are 

𝐸𝑟 =
𝑄𝑥𝛾

(𝑥2 + 𝑧2𝛾2)3 2⁄

𝐸𝑧 =
𝑄𝑧𝛾

(𝑥2 + 𝑧2𝛾2)3 2⁄

𝐵𝜙 = −
𝑣𝐸𝑟

𝑐2

Longitudinal Impulse 
The force is due to Ez alone (Fz = Ez). Performing the 

integral we find: 

∫ 𝐹𝑧 ⅆ𝑧 = −
𝑄

𝛾√𝑥2 + 𝛾2𝑧ℎ
2

+
𝑄

𝛾√𝑥2 + 𝛾2𝑧𝑡
2

∫ 𝐹𝑧 ⅆ𝑧 ≈
𝑄(𝑧ℎ − 𝑧𝑡)

𝛾2𝑧ℎ𝑧𝑡

−
𝑄𝑥2(𝑧ℎ

3 − 𝑧𝑡
3)

2𝛾4𝑧ℎ
3𝑧𝑡

3

The impulse tends to zero when γ>>1, and is zero when zh 
= zt. This is consistent with the expectation that the entire 
impulse is identically zero, irrespective of γ >1. 

Transverse Impulse 
The force is due to Er and u×Bφ. When u= -v, test charge 

and beam oppositely directed, the electric and magnetic 
forces add up. The net result is Er(1+uv/c2) →2Er. Hence 
the force is Fr = 2Er   in the relativistic regime. Performing 
the integral we find: 

∫ 𝐹𝑟 ⅆ𝑧 =
2𝑄

𝑥
(2 −

𝛾𝑧ℎ

√𝑥2 + 𝛾2𝑧ℎ
2

−
𝛾𝑧𝑡

√𝑥2 + 𝛾2𝑧𝑡
2

) ___________________________________________  
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∫ 𝐹𝑟 ⅆ𝑧 ≈
𝑄𝑥

𝛾2
(

1

𝑧ℎ
2 +

1

𝑧𝑡
2) 

Here x is less than the bunch transverse extent b (0<x<b). 
The impulse tends to zero when the bunch is much longer 
than its width (zh, zt >>b) and when γ>>1. Hence the con-
tribution is insignificant in both the long-bunch and short -
bunch regimes. Note the 1/γ2

  dependence is not from EM 
cancellation, rather it follows from the relativistic reduc-
tion of fields in front and behind the bunch. 
When u=v, test charge and beam co-moving, the range of 
integration is invalid. 

NEAR-FIELD IMPULSE 
We come now to the condition where the test particle 

is within the bunch. As we shall see, the form of the EM 
field only separates into a product when the charges are 
moving. 

Field from Stationary Charge Distribution 
Suppose the charge density is separated: R=λ(z)ρ(x,y). 

The total charge is Q =∫R(x,y,z)dVol = ∫λ(z)dz∫ρ(x,y)dS. 
The number of particles is N=Q/q, where q is the individual 
charge. 

For stationary charges, Div.E = R(x,y,z)/ε and Curl E=0 
and B=0. These equations are sufficiently constraining that 
it is not possible to find solutions (inside the bunch) of the 
product form: E┴ = λ(z) h(x,y) and E║= (∂λ/∂z) g(x,y). 

Fields from Moving Charge Distribution 
We calculate the fields in the laboratory frame for a 

moving charge distribution, starting from Maxwell’s equa-
tions. The charge density and current sources are, respec-
tively: R= ρ(x,y)λ(z + vt) and J = ez (-v) R(x,y,z,vt).  

 
Figure 1: Maxwell’s equations for electromagnetism. 

The RHS of the two curl equations generates addi-
tional geometric freedom that allows a product form for 
fields. We assume the source (the “strong” beam) moves to 
the left with velocity -v. The partial derivative ∂/∂t = +v 
∂/∂z for bunch moving to left, assuming coordinate z points 
to right.  
Substituting the factored R and J, we find the condition:  

Curl B = (v/c2)[-λ(z)ez (Div┴.E┴) + ∂λ(z,t)/∂z E┴(x,y)] 
There is a fully self-consistent solution of the four Max-

well equations, Fig.1, of the form: 

E= er Er[r,z] + ez Ez[r,z] 

B(┴)= (-v/c2) ez ×E(┴) 

𝐸𝑧 =
1

𝛾2
∫ (𝜕𝐸𝑟/𝜕𝑧)ⅆ𝑟

𝑟

0

 

 

B= eφ Bφ (r,z) 
Bφ = (-v/c2) Er. 

All quantities follow from the transverse electric field Er, 
which must satisfy the equation: 

1

𝑟
Er[𝑟, 𝑧] +

1

𝛾2
∫ 𝜕2Er/𝜕𝑧2 ⅆ𝑟 +

𝜕Er

𝜕𝑟
= 𝜆[𝑧]𝜌[𝑟] 

Note, the 1/γ2 dependence here does not arise from can-

cellation between electric field E and magnetic field B. 

Rather, it arises from the field lines of a single charge 

flattening into a pancake shape, as per the formulae re-

ported by Jackson.  

Transverse Impulse 
Ultra-relativistic regime  

When γ >>1, Er has solution in the desired product 
form: 

Er[𝑟, 𝑧] → 𝜆[𝑧] Er[r] 

Er[𝑟] →
1

𝑟
 ∫ x 𝜌[𝑥] ⅆx

𝑟

0
 

The force acting is F[r,z] =(Er ±uBφ) =λ[z]Er[r](1±uv/c2), 
with the sign ±depending on the test particle be counter-
rotating or co-moving. The impulse is obtained by integrat-
ing the bunch over longitude z. The integral is independent 
of the bunch shape, because it is simply the bunch total 
charge. 
Non-relativistic regime 

We may approximate the regime γ>1, by substituting 
the known form Er[r,z] immediately above into the integro-
differential equation and treating it as a source term. Hence 
to higher order (better than 2nd order), we have 

1

𝑟
Er[𝑟, 𝑧] +

1

𝛾2
∫𝜆"[𝑧]

∫ x 𝜌[𝑥] ⅆx
𝑟

0

𝑟
ⅆ𝑟 +

𝜕Er

𝜕𝑟

= 𝜆[𝑧] 𝜌[𝑟] 

We now integrate this equation over the longitudinal coor-
dinate from head to tail of the bunch. The integral of 𝜆[𝑧] 
is related to the number of particles in the bunch. Contrarily 
the integral over the bunch of any derivative of 𝜆[𝑧] must 
be zero, because the bunch goes to zero at its ends.  
Hence the electric field contribution to the transverse im-

pulse satisfies: 
1

𝑟
Er[𝑟] +

𝜕Er

𝜕𝑟
=

𝑁𝜌[𝑟]

∫ 𝑟𝜌[𝑟] ⅆ𝑟
𝑏

0

 

 

Er[𝑟] = 𝑁
∫ 𝑥𝜌[𝑥] ⅆ𝑥

𝑟

0

𝑟
 

And like wise for Bφ[r]= ∫Bφ[r,z]dz integrated over z. 
Hence the impulse ∫Fdz = E[r] (1+v2/c2) →2 E[r] when 

counter-moving, and ∫Fdz = E[r] /γ2
  when co-moving.  
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The dependence on u =±v is from magnetic enhancement 

or cancellation. 

SCALING LAW 
We have been Cavalier; we assumed that the relativistic 

kinematic γ is much larger than the derivative of the bunch 
shape. We revisit this assumption with more care. We take 
new dimensionless variables that are scaled by the bunch 
r.m.s transverse and longitudinal dimensions a and b, re-
spectively. Let x=r/a and y=z/b. We transform the deriva-
tives according to the chain rule. And then we perform the 
Fourier transform w.r.t. the dimensionless wavenumber k, 
that is to say we multiply by Exp[i k y] and integrate over 
y. The result is that spatial density λ[z] is replaced by spec-
tral density λ[k]. 

Ex[𝑥, 𝑘]

𝑥
− 𝑞2 ∫ Ex[𝑢, 𝑘] ⅆ𝑢

𝑥

0

+
𝜕Ex[𝑥, 𝑘]

𝜕𝑥
= 𝑎 𝜆[𝑘]𝜌[𝑥] 

Here   𝑞2 →
𝑎2𝑘2

𝑏2𝛾2  is the relevant scale parameter.  

This is an inhomogeneous Bessel equation, and solu-
tion may be obtained in terms of Green’s functions con-
structed from Bessel functions; see the Appendix. Inverting 
the Fourier transform and coordinate scalings leads to the 
fields as before. Let  e[iky] denote the exponential. If the 
bunches are periodic, the result is a Fourier series. 

E[𝑟, 𝑦] = ∑ ⅇ[ⅈ𝑘𝑦]Er[𝑟, 𝑘]𝜆[𝑘]

∞

𝑘=0

 

If this is integrated over longitude y to obtain the impulse, 
it is evident that only the term in k=0 will remain. Hence 
the contribution of the electric field to the impulse is  

E[𝑟] = ∫ E[𝑟, 𝑦] ⅆ𝑦 = Er[𝑟, 𝑘 = 0]𝜆[𝑘 = 0] 
Now the spectral density λ[k=0] =∫ λ[z]dz is simply the 
bunch charge. Further, when scale parameter q=0, the Bes-
sel equation reduces to simple form with solution 

Ex[𝑥, 𝑘 = 0] →
1

𝑥
 ∫ u 𝜌[𝑢] ⅆ𝑢

𝑥

0
 

Hence the electric impulse is again  

Er[𝑟] = 𝑁
∫ 𝑥𝜌[𝑥] ⅆ𝑥

𝑟

0

𝑟
 

And likewise, the magnetic contribution is ±uv/c2Er[r]. 

Iterative Solution 
Previously we had proposed substituting the solution 

when q=0 into the integro-differential equation and treat-
ing it as a source term. Essentially this is an iterative solu-
tion. We now do this explicitly for a few simple cases, 
making use of the dimensionless variables. For brevity, let 
Fx0 be equal to Ex/𝜆[𝑘] @ q=0. 

ρ(u) Fx0 Ex/𝜆[𝑘] @ q≠0 
1 𝑎𝑥 1

8
𝑎𝑞2𝑥3 + Fx0 

1-u 𝑎𝑥(3 − 2𝑥) 
𝑎𝑞2𝑥3 (

3

8
−

2𝑥

15
) + Fx0 

1-u2 𝑎𝑥(2 − 𝑥2) 
𝑎𝑞2𝑥3 (

1

4
−

𝑥2

24
) + Fx0 

The range of u & x =[0,1]. 

CONCLUSION 
This paper investigates the transverse electro-magnetic 

impulse due to the passage of a bunch of charged particles 
under the assumption the charge density is the product 
form R=λ(z)ρ(x,y). In the long-bunch regime, the electric 
fields are rigorously of the form λ(z)P(x,y); and the im-
pulse is independent of the bunch shape. In the short-
bunch regime, the electric field is not strictly of the prod-
uct form but may be written as a Fourier series. In first 
approximation, the coefficients in this series may be 
found as an expansion in 𝑞 =

𝑎𝑘

𝑏𝛾
< 1. 

APPENDIX 
Let s = ± i q where i = √-1. The Green’s function with 

boundary condition ∂Ex[x,k]/∂x = a ρ[0]/2 at x=0 is: 
Ex[𝑥, 𝑘] → (

𝑎

𝑠
) BesselJ[1, 𝑠𝑥]𝜌[0] + 

1

2
𝑎𝜋 ∫ 𝑢(−BesselJ[1, 𝑠𝑥]BesselY[1, 𝑠𝑢]

𝑥

0

+ BesselJ[1, 𝑠𝑢]BesselY[1, 𝑠𝑥])𝜌′[𝑢] ⅆ𝑢 
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