Paper | Title | Page |
---|---|---|
THYYPLM1 |
A Novel Compact High Rep-Rate Gamma Ray Source Based on Strongly Tapered Undulator Interactions | |
MOPRB108 | use link to see paper's listing under its alternate paper code | |
|
||
Recent experimental efforts have shown strongly tapered undulator interactions to be the most efficient means for exchanging energy between relativistic electron beams and electro-magnetic fields. The Rubicon Inverse Free Electron Laser (IFEL) accelerator demonstrated up to 100 MeV/m acceleration gradients, producing high quality mono-energetic beams. In separate experiments, it was also shown that this acceleration could occur at high rep-rates, and the accelerated beams could be used to produce X-rays through Inverse Compton Scattering (ICS). The Nocibur experiment demonstrated the reverse process, converting 30% of the energy in a relativistic electron beam to coherent radiation. Combining these concepts, we present here a novel scheme where a laser, re-circulated in an optical cavity drives an IFEL interaction, accelerating a 200 MeV beam up to 1 GeV, at which point an ICS interaction can be used to produce gamma rays. This is followed by a Nocibur-like interaction, decelerating the beam below it’s initial energy, replenishing the laser energy absorbed in the acceleration stage as well as compensating for cavity losses. | ||
![]() |
Slides THYYPLM1 [5.666 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYYPLM2 | Two Orbit Operation at Bessy II - During a User Test Week | 3419 |
|
||
Operating a storage ring close to a horizontal resonance and manipulating the transverse non-linear beam dynamics can generate stable Transverse Resonance Island Buckets (TRIBs), which give a 2nd stable orbit in the ring. Both orbits can be populated with different electron bunch filling patterns and provide two different radiation sources to the user community. Such a machine setting has been established at BESSY II and was tested under realistic user conditions in a first ’TRIBs/Two Orbit User Test Week’ in February 2018. Results and user feedback will be discussed in this contribution. | ||
![]() |
Slides THYYPLM2 [64.754 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLM2 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 24 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THYYPLM3 | High-Charge Injector for on-Axis Injection Into A High-Performance Storage Ring Light Source | 3423 |
|
||
Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. Next-generation, high-performance storage ring light sources based on multibend achromat optics will require on-axis injection because of the extremely small dynamic aperture. Injectors will need to supply full-current bunch replacement in the ring with high single-bunch charge for swap-out. For upgrades of existing light sources, such as the Advanced Photon Source Upgrade (APS-U), it is economical to retain the existing injector infrastructure and make appropriate improvements. The challenges to these improvements include achieving high single-bunch charge in the presence of instabilities, beam loading, charge stability and reliability. In this paper, we discuss the rationale for the injector upgrades chosen for APS-U, as well as backup and potential alternate schemes. To date, we have achieved single-bunch charge from the injectors that doubles the original design value, and have a goal to achieve about three times the original design value. |
||
![]() |
Slides THYYPLM3 [1.499 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THYYPLM3 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |