MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects
T23 Machine Protection
Paper Title Page
THPRB019 Collimation of Target Induced Halo Following MAGIX at MESA 3839
SUSPFO021   use link to see paper's listing under its alternate paper code  
 
  • B. Ledroit
    IKP, Mainz, Germany
  • K. Aulenbacher
    KPH, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: Supported by the DFG through GRK 2128
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing operation in energy-recovery linac (ERL) mode. It provides the opportunity to operate scattering experiments at energies of ~100 MeV with thin gas-targets. The MESA Internal Gas Target Experiment (MAGIX) aims to operate windowless jet targets and different gases up to Xenon to search for possible dark photon interactions, to precisely measure the magnetic proton radius and astrophysical S-factors. Investigations on the impact of the target on beam dynamics and beam losses are required for machine safety and to examine limits to ERL operation. The goal of this work is to understand target induced halo in the different experimental setups, track halo particles through downstream sections to examine beam losses and include a suitable collimation system and shielding into the accelerator layout to protect the machine from direct and indirect damage through beam losses and radiation. The present status of the investigations is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB019  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB031 Operational Performance of the Machine Protection Systems of the Large Hadron Collider During Run 2 and Lessons Learnt for the LIU/HL-LHC Era 3875
 
  • M. Zerlauth, A. Antoine, W. Bartmann, C. Bracco, E. Carlier, Z. Charifoulline, R. Denz, B. Goddard, A. Lechner, N. Magnin, C. Martin, R. Mompo, S. Redaelli, I. Romera, B. Salvachua, R. Schmidt, J.A. Uythoven, A.P. Verweij, J. Wenninger, C. Wiesner, D. Wollmann, C. Zamantzas
    CERN, Geneva, Switzerland
 
  The Large Hadron Collider (LHC) has successfully completed its second operational run of four years length in December 2018. Operation will be stopped during two years for maintenance and upgrades. To allow for the successful completion of the diverse physics program at 6.5 TeV, the LHC has been routinely operating with stored beam energies close to 300 MJ per beam during high intensity proton runs as well as being frequently reconfigured to allow for special physic runs and important machine developments. No significant damage has incurred to the protected accelerator equipment throughout the run thanks to the excellent performance of the various machine protection systems, however a number of important observations and new failure scenarios have been identified, which were studied experimentally as well as through detailed simulations. In this contribution, we provide an overview of the performance of the machine protection systems throughout Run 2 as well as the important lessons learnt that will impact consolidation actions and the upgrade of the machine protection systems for the LIU/HL-LHC era.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB031  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB035 Development of Beam Window Protection System for J-PARC Linac 3886
 
  • H. Takahashi, S. Hatakeyama, Y. Sawabe
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Ishiyama, T. Suzuki
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • T. Miyao
    KEK, Ibaraki, Japan
 
  In J-PARC Linac, beam study (including beam conditioning) is mainly performed using beam dump. A beam window is installed in the beam line to each beam dump. It is considered that the parameters of acceptable beam to able to be injected the beam window are the 50 mA current, the 100 micro-sec width and the 2.5 Hz repetition. On the other hand, at beam study of Linac, the beam with higher power than these parameters are not used. Therefore, the beam study was started and performed only after the operator checked that the beam parameters are within the acceptable values. However, at the beam study of 2018, a beam windows of 0-degree dump was cracked because the beam that exceeds acceptable parameters was injected due to human error. Then, beam study using 0-degree dump was impossible at all. And, in order not to cause such accident again, we began to develop the beam window protection system. Moreover, as soon as possible, implementation of the system was required. Therefore, we designed and developed this system by improving it based on the particle management system which can measure all 25 Hz beam. We have developed a beam window protection system that monitors the beam current for each shot and accumulated beam current for a prescribed time and inhibits the beam by MPS when either value exceeds the threshold. Moreover, we succeeded in developing and implementing this system in a short time. This paper is described about development and function test of beam window protection system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB035  
About • paper received ※ 30 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB118 Study on the Influence of the Range Shifter Material in a Scanning Nozzle for Proton Therapy Based on Monte Carlo Method 4100
 
  • Y.C. Yu, H.D. Guo, Y.Y. Hu, X.Y. Li, Y.J. Lin, P. Tan, X.D. Tu, L.G. Zhang
    HUST, Wuhan, People’s Republic of China
 
  Range shifter plays a key role in decreasing the energy of the proton beam to realize shallow tumours treatment with the scanning nozzle in Huazhong University of Science and Technology Proton Therapy Facility (HUST-PTF). To control the transverse scattering and decrease the damage to healthy tissue caused by secondary particle, influence of the range shifter material was studied. In this paper, the Monte Carlo software Geant4 and FLUKA are applied to analyse the transport process of proton beam in the range shifters made of six different materials: PMMA, Lexan, Lucite, Polyethylene, Polystyrene, and Wax. The beam spot sizes at the iso-center with or without range shifter was calculated for the HUST-PTF scanning nozzle. The relationship between the thickness of the range shifters of the six materials and the proton energy was obtained. The secondary neutron yield at the end of the nozzle was also analysed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB118  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)