MC4: Hadron Accelerators
A13 Cyclotrons
Paper Title Page
TUPTS008 The Pulsing Chopper-Based System of the Arronax C70XP Cyclotron 1948
 
  • F. Poirier
    CNRS - DR17, RENNES, France
  • G. Blain, M. Fattahi, F. Haddad, J. Vandenborre
    SUBATECH, Nantes, France
  • F. Bulteau-harel, X. Goiziou, C. Koumeir, A. Letaeron, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
 
  Funding: This work is, in part, supported by a grant from the French National Agency for Research called "Investissements d’Avenir", Equipex Arronax-Plus noANR-11-EQPX-0004 and LabexIRON noANR-11-LABX-18-01.
The Arronax Public Interest Group (GIP) uses a multi-particle cyclotron to perform irradiation from a few pA up to hundreds of uA on various experiments and targets *. To support further low intensity usage and extend the beam time structure required for experiments such as pulsed experiments studies (radiolysis, proton therapeutic irradiation) and high intensity impact studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, the last results in terms of time structure, various low intensity experimental studies performed with alpha and proton beams and the dedicated photon diagnostics.
* F.Poirier et al., "Studies and Upgrades on the C70 Cyclotron Arronax", CYC16, September 2016, TUD02.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS008  
About • paper received ※ 12 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS021 Basic Design of the RF Power System for IRANCYC-10 Accelerator 1972
 
  • M. Dehghan, F. Abbasi
    Shahid Beheshti University, Tehran, Iran
  • H. Azizi
    ILSF, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
  • A. Taghibi Khotbeh-Sara
    KNTU, Tehran, Iran
 
  In this paper the basic design of an RF system to produce the required power of IRANCYC-10 cyclotron accelerator is reported. The designed system can generate 15 kW power at the operating frequency of 71 MHz CW. The authors provide a step-by-step ex-planation of the process of the design. It is carried out in three sections; (1) RF design features of the acceler-ator is investigated and power value is calculated in accordance with the requirements of the cyclotron, (2) the choice of solid state amplifiers as the RF power source is presented with its available power and struc-ture, (3) design of insertion instruments is reported to transfer and combine the RF power. The purpose of the paper is to achieve the best performance of the RF system, as well as decreasing overall size by using modular devices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS021  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS023 A CENTRAL REGION UPGRADE OF THE k800 SUPERCONDUCTING CYCLOTRON AT INFN-LNS 1975
 
  • G. D’Agostino, L. Calabretta, D. Rifuggiato
    INFN/LNS, Catania, Italy
  • W.J.G.M. Kleeven
    IBA, Louvain-la-Neuve, Belgium
 
  The Superconducting Cyclotron (CS) at INFN-LNS in Catania is currently under an upgrade process. The plan is to deliver beams of ions with mass number 𝐴 ≤ 40 with power up to 10 kW. This ambitious goal can be achieved increasing the efficiency of the injection and extraction processes. An extraction efficiency close to 100% is expected by extracting the specific ion beams from the CS by stripping and no longer by electrostatic deflectors. The beams are injected axially and bent onto the median plane with a spiral inflector. Currently, the injection efficiency stays around 15%, also including the effect of a drift buncher placed in the axial injection line. In order to increase the injection efficiency, the study of an upgraded CS central region is ongoing at INFN-LNS. In this paper, the results of simulations of beam tracking through the cyclotron axial bore, the spiral inflector, the central region and further up to the extraction system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS023  
About • paper received ※ 29 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS028 Extraction System of Upgraded AVF Cyclotron of RCNP 1993
 
  • M. Nakao, M. Fukuda, S. Hara, T. Hara, K. Hatanaka, K. Kamakura, H. Kanda, H.W. Koay, S. Morinobu, Y. Morita, K. Nagayama, T. Saito, K. Takeda, H. Tamura, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
 
  The AVF cyclotron of RCNP have been utilized for the purposes of basic research in physics, RI production for medicine and industrial applications as well as injector of ring cyclotron. Increasing beam intensity without decreasing beam quality can make improvements in all purposes. The improvement and repair of the AVF cyclotron are being carried out currently. We designed the new LEBT, injection, acceleration and extraction systems and we report on the extraction system here. High extraction efficiency is indispensable when increasing the beam intensity since beam loss causes activation of apparatus. New extraction system consists of deflector electrodes and two gradient correctors and probes. One gradient corrector causes a horizontally focus effect on the beam and the other causes horizontally defocus effect to avoid spreading of the beam with strong defocus effect caused by the main cyclotron magnetic field. Simulation study confirmed that 10 MeV proton, 65 MeV proton and 140 MeV alpha particles with 2 mm × 3 mrad could pass through the newly designed extraction system and the existing beam transport line. Beam simulation has been performed by utilizing SNOP* and OPAL** codes.
* SNOP V.L. Smirnov, S.B. Vorozhtsov, Proc. of RUPAC2012 TUPPB008 325 (2012)
** The OPAL (Object Oriented Parallel Accelerator Library) Framework, Andreas Adelmann et al., PSI-PR-08-02, (2008-2018)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS028  
About • paper received ※ 01 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS059 Conceptual Design of the SC230 Superconducting Cyclotron for Proton Therapy 2058
TUPTS055   use link to see paper's listing under its alternate paper code  
 
  • O. Karamyshev, S. Gurskiy, G.A. Karamysheva, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
 
  Physical design of the compact superconducting cyclotron SC230 (91.5MHz) has been performed. The cyclotron will deliver up to 230 MeV beam for proton therapy and medico-biological research. We have performed simulations of magnetic and accelerating systems of the SC230 cyclotron and specified the main parameters of the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS059  
About • paper received ※ 15 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTS060 Beam Dynamics Simulations in the Dubna SC230 Superconducting Cyclotron for Proton Therapy 2061
 
  • G.A. Karamysheva, S. Gurskiy, O. Karamyshev, D.V. Popov, G. Shirkov, S.G. Shirkov, V.L. Smirnov, S.B. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • V. Malinin
    JINR/DLNP, Dubna, Moscow region, Russia
 
  We present results of the beam dynamics simulation for the compact isochronous superconducting cyclotron SC230. We have performed beam tracking starting from the ion source. The extraction system scheme and results of beam extraction simulations are presented. The codes and methods used for beam tracking are briefly described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS060  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)