MC1: Circular and Linear Colliders
A09 Muon Accelerators and Neutrino Factories
Paper Title Page
MOZZPLS2 Positron Driven Muon Source for a Muon Collider: Recent Developments 49
 
  • M.E. Biagini, M. Antonelli, O.R. Blanco-García, M. Boscolo, A. Ciarma, A. Giribono, S. Guiducci, C. Vaccarezza, A. Variola
    INFN/LNF, Frascati, Italy
  • A. Bacci
    INFN-Milano, Milano, Italy
  • M. Bauce, F. Collamati
    INFN-Roma1, Rome, Italy
  • G. Cesarini
    INFN-Roma, Roma, Italy
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
  • D. Lucchesi
    Univ. degli Studi di Padova, Padova, Italy
  • N. Pastrone
    INFN-Torino, Torino, Italy
 
  The design of a future multi-TeV muon collider needs new ideas to overcome the technological challenges related to muon production, cooling, accumulation and acceleration. The Low Emittance Muon Accelerator (LEMMA) concept *,** presents in this paper an upgraded layout of a positron driven muon source. The positron beam, stored in a ring with high energy acceptance and low emittance, is extracted and driven in a push-pull configuration to a multi-target system, to produce muon pairs at threshold on the target’s electrons. This solution alleviates the issues related to the power deposited and the integrated Peak Energy Density Deposition on the targets. Muons produced in the multi-target system will then be accumulated in many parallel rings before acceleration and injection in the collider. A special multi-target line lattice has been designed to cope with the focusing of both the positron and muon beams. Studies on the number, material and thickness of the targets have been carried out. A general layout of the overall scheme and a description is presented, as well as plans for future R&D.
* M. Antonelli, P. Raimondi, INFN-13-22/LNF, 2013
** M. Boscolo, M. Antonelli, O.R. Blanco-Garcia, S. Guiducci, S. Liuzzo, P. Raimondi, F. Collamati, Phys. Rev. Accel. Beams, vol. 21, p. 061005, 2018
 
slides icon Slides MOZZPLS2 [4.360 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOZZPLS2  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB003 Multi-Target Lattice for Muon Production From e+ Beam Annihilation on Target 578
 
  • O.R. Blanco-García
    LAL, Orsay, France
  • M. Antonelli, M.E. Biagini, M. Boscolo, A. Ciarma, S. Guiducci, C. Vaccarezza, A. Variola
    INFN/LNF, Frascati, Italy
  • G. Cesarini
    INFN-Roma, Roma, Italy
  • F. Collamati
    INFN-Roma1, Rome, Italy
  • R. Li Voti
    Sapienza University of Rome, Rome, Italy
  • P. Raimondi
    ESRF, Grenoble, France
 
  The Low Emittance Muon Accelerator~(LEMMA) aims at producing small emittance muons from positron annihilation with electrons in a target. Given the low cross section of the production process, a large number of positrons on the target are required, exposing it to high power deposition and the beam to large degradation because of multiple scattering and bremstrahlung. A multi-target IP, and multi-IP line has been studied to reduce the power deposition per target and the degradation of the positron beam while preserving the number of muon pairs produced. The lattice copes with the focusing and transport of three beams at two different energies, the positron beam at 45 GeV, and µ++ and µ beams at 22.5~GeV. Studies on the beam dynamics, number of targets, material and thickness of the targets are reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB003  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB004 The European Spallation Source Neutrino Super Beam Design Study 582
 
  • M. Dracos, E. Bouquerel
    IPHC, Strasbourg Cedex 2, France
  • G. Fanourakis
    Institute of Nuclear and Particle Physics, Attiki, Greece
  • G. Gokbulut, A. Kayis Topaksu
    Cukurova University, Adana, Turkey
 
  Funding: This project is supported by the COST Action CA15139 EuroNuNet. It has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777419.
The discovery of oscillations and the latest progress in neutrino physics will make possible to observe for the first time a possible CP violation at the level of leptons. This will help to understand the disappearance of antimatter in the Universe. The ESSnuSB* project proposes to use the proton linac of the ESS currently under construction to produce a very intense neutrino Super Beam, in parallel with the spallation neutron production. The ESS linac is expected to deliver 5 MW average power, 2 GeV proton beam, with a rate of 14 Hz and pulse duration of 2.86 ms. By doubling the pulse rate, 5 MW power more can be provided for the production of the neutrino beam. In order to shorten the proton pulse duration to few μs requested by the neutrino facility, an accumulation ring is needed, imposing the use and acceleration of H instead of protons in the linac. The neutrino facility also needs a separate target station with a different design than the one of the neutron facility. On top of the target, a hadron magnetic collecting device is needed in order to focus the emerging hadrons from the target and obtain an intense neutrino beam directed towards the neutrino detector.
A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac, Nuclear Physics B, Vol 885, Aug 2014, 127-149, arXiv:1309.7022.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB004  
About • paper received ※ 10 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)