MC1: Circular and Linear Colliders
A03 Linear Colliders
Paper Title Page
MOPMP007 Design of a Compact Power Distribution System for the ILC 436
SUSPFO038   use link to see paper's listing under its alternate paper code  
 
  • B. Du, N. Liu
    Sokendai - Hayama, Hayama, Japan
  • T. Matsumoto, S. Michizono, T. Miura, F. Qiu
    KEK, Ibaraki, Japan
  • T. Matsumoto, T. Miura, F. Qiu
    Sokendai, Ibaraki, Japan
 
  The Local power distribution system (LPDS) of the In-ternational Linear Collider (ILC) is constructed to transmit RF power from the 10 MW klystron to 39 cavi-ties. Each eight or nine 9-cell cavities is assembled in one cryomodule. The variable hybrid is used to adjust the power dividing ratio due to the different required power of each cavity and the variable phase shifter is used to compensate the phase drift caused by the variable hybrid. More compact LPDS is expected to be integrated on the cryomodule decreasing financial cost. We re-design the shorter variable hybrid with a margin of power ratio of ±25% and phase shifter of total phase range being 35° for compensating hybrid and on-crest searching. Fixed phase shifters are designed to adjust the phase difference between adjacent cavities for beam acceleration. Simu-lated results of total compact LPDS can meet the re-quirements of ILC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP007  
About • paper received ※ 16 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP008 Electron Driven Positron Source for International Linear Collider 439
 
  • M. Kuriki, T. Okugi, T. Omori, M. Satoh, Y. Seimiya, J. Urakawa, K. Yokoya
    KEK, Ibaraki, Japan
  • H. Nagoshi
    HU/AdSM, Higashi-Hiroshima, Japan
  • K. Negishi
    Iwate University, Morioka, Iwate, Japan
  • Y. Sumitomo
    LEBRA, Funabashi, Japan
  • T. Takahashi
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima, Japan
 
  Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI)
To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented. To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP008  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP016 Intra-Bunch Energy Spread Minimisation for CLIC Operation at a Centre-of-Mass Energy of 350 GeV 458
 
  • N. Blaskovic Kraljevic, D. Arominski, D. Schulte
    CERN, Meyrin, Switzerland
 
  The first stage of the electron-positron Compact Linear Collider (CLIC) is designed with a centre-of-mass energy of 380 GeV. A dedicated threshold scan in the vicinity of 350 GeV is envisioned with a total integrated luminosity of 100 fb-1. This scan calls for a very small intra-bunch energy spread in order to achieve an excellent collision energy resolution. This paper presents an optimised assignment of RF accelerating gradients and phases in the CLIC main linac for operation at 350 GeV, which minimises the energy spread at the end of the main linac whilst preserving a small emittance growth. Variation of the bunch length and charge is studied in order to further reduce the energy spread; the effect on both the peak and total luminosity is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP016  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP017 Beam Orbit Correction in the CLIC Main Linac Using a Small Subset of Correctors 461
 
  • N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
 
  Beam orbit correction in future linear colliders, such as the Compact Linear Collider (CLIC), is essential to mitigate the effect of accelerator element misalignment due to ground motion. The correction is performed using correctors distributed along the accelerator, based on the beam position monitor (BPM) readout from the preceding bunch train, with a train repetition frequency of 50 Hz. This paper presents the use of the MICADO algorithm* to select a subset of N ~ 10 correctors (from a total of 576) to be used for orbit correction in the designed 380 GeV centre-of-mass energy first-stage of CLIC. The optimisation of the number N of correctors, the algorithm’s gain and the corrector step size is described, and the impact of a number of BPMs and correctors becoming unavailable is addressed. The application of a MICADO algorithm to perform dispersion free steering, by reducing the beam orbit difference between two beams with different energies, is discussed.
* B. Autin & Y. Marti, "Closed orbit correction of A.G. machines using a small number of magnets", CERN-ISR-MA/73-17, 1973.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP017  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP018 Beam-Based Beamline Element Alignment for the Main Linac of the 380 GeV Stage of CLIC 465
 
  • N. Blaskovic Kraljevic, D. Schulte
    CERN, Meyrin, Switzerland
 
  The extremely small vertical beam size required at the interaction point of future linear colliders, such as the Compact Linear Collider (CLIC), calls for a very small vertical emittance. The strong wakefields in the high frequency 12 GHz CLIC accelerating structures set tight tolerances on the alignment of the main linac’s beamline elements and on the correction of the beam orbit through them in order to mantain a small emittance growth. This paper presents the emittance growth due to each type of beamline element misalignment in the designed 380 GeV centre-of-mass energy first-stage of CLIC, and the emittance growth following a series of beam-based alignment (BBA) procedures. The BBA techniques used are one-to-one steering, followed by dispersion free steering and finally accelerating structure alignment using wakefield monitors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP018  
About • paper received ※ 13 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP034 Tuning Studies of the CLIC 380 Gev Final Focus System 512
 
  • J. Ögren, A. Latina, D. Schulte, R. Tomás
    CERN, Meyrin, Switzerland
 
  We present tuning studies of the Compact Linear Collider final-focus system under static imperfections including transverse misalignments, roll errors and magnetic strength errors. The tuning procedure consists of beam-based alignment for correcting the linear part of the system followed by sextupole pre-alignment and use of multipole tuning knobs. The sextupole pre-alignment is very robust and allows the tuning time to be greatly reduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP034  
About • paper received ※ 06 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMP038 Investigation of CLIC 380 GeV Post-Collision Line 528
 
  • R.M. Bodenstein, A. Abramov, S.T. Boogert, P. Burrows, L.J. Nevay
    JAI, Oxford, United Kingdom
  • D. Schulte, R. Tomás
    CERN, Meyrin, Switzerland
 
  It has been proposed that the Compact Linear Collider (CLIC) be commissioned in stages, starting with a lower-energy, 380 GeV version for the first stage, and concluding with a 3 TeV version for the final stage. In the Conceptual Design Report (CDR) published in 2012, the post-collision line is described for the 3 TeV and 500 GeV stages. However, the post-collision line for the 380 GeV design was not investigated. This work will describe the simulation studies performed in BDSIM for the 380 GeV post-collision line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP038  
About • paper received ※ 13 May 2019       paper accepted ※ 18 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)