Paper | Title | Page |
---|---|---|
MOPMP051 | 56 MHz SRF System for SPHENIX Experiments at RHIC | 562 |
|
||
Funding: Work supported by by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy The sPHENIX experiment is a proposal for a new detector at the Relativistic Heavy Ion Collider (RHIC), that plans to expand on discoveries made by RHIC’s existing STAR and PHENIX research groups. To minimize the luminosity outside the 20 cm vertex detector and keeping the radiation to other detector components as low as possible, a 56 MHz SRF system is added to the existing RHIC RF systems to compress the bunches with less beam loss. The existing 56 MHz SRF cavity was commissioned in previous RHIC runs, and contributed to the luminosity at a voltage of 300kV with thermal limitations from the Higher Order Mode coupler at high field, and at 1MV while using its fundamental damper for HOM damping. In this paper, we will analyze and compare the effect of different RF systems at various scenarios, and discuss possible solutions to the Higher Order Mode (HOM) damping scheme to bring the cavity to 2 MV. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP051 | |
About • | paper received ※ 15 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS078 | Coherent Electron Cooling (CeC) Experiment at RHIC: Status and Plans | 2101 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and NSF Grant No. PHY-141525 We will present currents status of the CeC experiment at RHIC and discuss plans for future. Special focus will be given to unexpected experimental results obtained during RHIC Run 18 and discovery of a previously unknown type of microwave instability. We called this new phenomenon micro-bunching Plasma Cascade Instability (PCI). Our plan for future experiments includes suppressing this instability in the CeC accelerator and using it as a broad-band amplifier in the CeC system. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS078 | |
About • | paper received ※ 19 May 2019 paper accepted ※ 22 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPRB102 | Correction of Crosstalk Effect in the LEReC Booster Cavity | 3051 |
|
||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. The Linac of Low Energy RHIC electron Cooler (LEReC) is designed to deliver a 1.6 MeV to 2.6 MeV electron beam, with peak-to-peak dp/p less than 7·10-4. The booster cavity is the major accelerating component in LEReC, which is a 0.4 cell cavity operating at 2 K, with a maximum energy gain of 2.2 MeV. It is modified from the Energy Recovery Linac (ERL) photocathode gun, with fundamental power coupler (FPC), pickup coupler (PU) and higher order mode (HOM) coupler close to each other. The direct coupling between FPC and PU induced crosstalk effect in this cavity. This effect is simulated and measured, and is further corrected using low level RF (LLRF) to meet the energy spread requirement. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPRB102 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |