Author: Stoel, L.S.
Paper Title Page
WEPMP024 Alternative Material Choices to Reduce Activation of Extraction Equipment 2363
 
  • D. Björkman, B. Balhan, J.C.C.M. Borburgh, L.S. Esposito, M.A. Fraser, B. Goddard, L.S. Stoel, H. Vincke
    CERN, Meyrin, Switzerland
 
  At CERN, the Super Proton Synchrotron (SPS) is equipped with a resonant slow extraction system in Long Straight Section 2 (LSS2) towards the fixed target (FT) beam lines in the North Area. The extraction region provides the physics experiments with a quasi-DC flux of high-energy protons over a few seconds, which corresponds to tens of thousands of turns. The resonant slow extraction process provokes beam losses and is therefore the origin of radiation damage and the production of induced radioactivity in this region of the machine. This induced radioactivity imposed high constraints on the equipment design to be reliable to minimise the radiation exposure to personnel during machine maintenance. A detailed FLUKA model was developed in order to better understand the beam loss patterns, activation of the machine and to identify equipment components that could be optimised to reduce the residual dose related hazards. Simulations identified multiple alternative materials for extraction equipment components as well as shielding locations, which implementation could reduce residual activation hazards.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP024  
About • paper received ※ 26 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP028 Crystal for Slow Extraction Loss-Reduction of the SPS Electrostatic Septum 2379
 
  • L.S. Esposito, P. Bestman, M.E.J. Butcher, M. Calviani, M. Di Castro, M. Donzé, M.A. Fraser, M. Garattini, Y. Gavrikov, S.S. Gilardoni, B. Goddard, V. Kain, J. Lendaro, A. Masi, M. Pari, J. Prieto, R. Rossi, W. Scandale, R. Seidenbinder, P. Serrano Galvez, L.S. Stoel, F.M. Velotti, V. Zhovkovska
    CERN, Meyrin, Switzerland
  • F.M. Addesa, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • A.G. Afonin, Y.A. Chesnokov, A.A. Durum, V.A. Maisheev, Yu.E. Sandomirskiy, A.A. Yanovich
    IHEP, Moscow Region, Russia
  • J.E. Borg, M. Garattini, G. Hall, T. James, M. Pesaresi
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A.S. Denisov, Y. Gavrikov, Yu.M. Ivanov, M.A. Koznov, L.G. Malyarenko, V. Skorobogatov
    PNPI, Gatchina, Leningrad District, Russia
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • A.D. Kovalenko, A.M. Taratin
    JINR, Dubna, Moscow Region, Russia
  • F. Murtas
    INFN/LNF, Frascati, Italy
  • A. Natochii
    LAL, Orsay, France
 
  The use of a bent crystal was investigated in order to reduce the losses at the CERN Super Proton Synchrotron (SPS) electrostatic septa (ZS) during the slow extraction of 400 GeV protons toward the North Area. The crystal, installed a few meters upstream the ZS, bends protons that would otherwise impinge on the ZS wires. Since particle deflection with good efficiency is achieved only when the crystal lattice is aligned within ~10 urad to the trajectory of the particles (at p = 400 GeV/c), a compact goniometer was built to allow the correct angular alignment of the crystal with respect to the incoming beam with a precision of few urad. In this paper, we report on the crystal features measured during a dedicated beam test by the UA9 experimental installation in the CERN H8 beam line. Details of the goniometer and its installation are also reported. The first results achieved during dedicated Machine Development (MD) sessions are finally presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP028  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP031 SPS Slow Extraction Losses and Activation: Update on Recent Improvements 2391
 
  • M.A. Fraser, B. Balhan, H. Bartosik, J. Bernhard, C. Bertone, D. Björkman, J.C.C.M. Borburgh, M. Brugger, N. Charitonidis, N. Conan, K. Cornelis, Y. Dutheil, L.S. Esposito, R. Garcia Alia, L. Gatignon, C.M. Genton, B. Goddard, C. Heßler, Y. Kadi, V. Kain, A. Mereghetti, M. Pari, M. Patecki, J. Prieto, S. Redaelli, F. Roncarolo, R. Rossi, W. Scandale, N. Solieri, J. Spanggaard, O. Stein, L.S. Stoel, F.M. Velotti, H. Vincke
    CERN, Meyrin, Switzerland
  • D. Barna, K. Brunner
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
 
  Annual high intensity requests of over 1019 protons on target (POT) from the CERN Super Proton Synchrotron (SPS) Fixed Target (FT) physics program continue, with the prospect of requests for even higher, unprecedented levels in the coming decade. A concerted and multifaceted R&D effort has been launched to understand and reduce the slow extraction induced radioactivation of the SPS and to anticipate future experimental proposals, such as SHiP* at the SPS Beam Dump Facility (BDF)**, which will request an additional 4·1019 POT per year. In this contribution, we report on operational improvements and recent advances that have been made to significantly reduce the slow extraction losses, by up to a factor of 3, with the deployment of new extraction concepts, including passive and active (thin, bent crystal) diffusers and extraction on the third-integer resonance with octupoles. In light of the successful tests of the prototype extraction loss reduction schemes, an outlook and implications for future SPS FT operation will be presented.
* A. Golutvin et al., Rep. CERN-SPSC-2015-016 (SPSC-P-350), CERN, Geneva, Switzerland, Apr. 2015.
** M. Lamont et al., Rep. CERN-PBC-REPORT-2018-001, CERN, Geneva, Switzerland, 11 Dec 2018.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP031  
About • paper received ※ 14 May 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP032 Tracking Simulations of Shadowing Electrostatic Septum Wires by Means of Bent Crystals 2395
 
  • F.M. Velotti, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel
    CERN, Meyrin, Switzerland
 
  The Super Proton Synchrotron (SPS) slow extraction is a third integer resonant extraction and hence suffers from high losses at the electrostatic septum (ZS). This is one of the main limiting factors for the maximum number of Protons On Target (POT) deliverable from the SPS to the North Area (NA). A concept to significantly reduce the extraction losses via shadowing of the electrostatic septum wires using an upstream bent crystal has been proposed in *, predicting a loss reduction of up to 50% for the prototype system installed in 2018. Following the successful experimental demonstration of the concept with beam **, detailed tracking simulations have been performed to fully understand the results obtained. Further insights, such as the effective ZS width and its alignment, could be deduced by exploiting the response of the extraction loss as a function of the two degrees of freedom of the crystal (position and angle). In this paper, the beam dynamics simulations are discussed together with the implementation of the bent crystal into the simulation framework. A comparison with measurements is presented before proposals for new configurations and parameters are discussed.
* F.M. Velotti, et al., "Reduction of Resonant Slow Extraction Losses…", IPAC’18.
** F.M. Velotti, M.A. Fraser, et al., "Experimental SPS Slow Extraction Loss Reduction…", this conf.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP032  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP033 Slow Extraction Loss Reduction With Octupoles at the CERN SPS 2399
 
  • L.S. Stoel, H. Bartosik, M. Benedikt, M.A. Fraser, B. Goddard, V. Kain, F.M. Velotti
    CERN, Meyrin, Switzerland
 
  The powering of octupoles during third-integer resonant slow extraction has been studied and recently tested with beam at the CERN Super Proton Synchrotron (SPS) in order to increase the extraction efficiency and reduce the induced radioactivity of the extraction straight. The octupoles distort the particle trajectories in phase space in such a way that the extracted separatrix is folded, which decreases the particle density impinging the wires of the extraction septum at the expense of increasing the extracted beam emittance. During experimental SPS machine studies a reduction of over 40% in the specific (per extracted proton) beam loss measured at the extraction septum was demonstrated. In this paper, the prerequisite studies needed to safely but efficiently deploy the new extraction scheme in a limited time-frame are described, the experimental results are presented and an outlook is given towards the next steps to bring slow extraction with octupoles into routine operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP033  
About • paper received ※ 14 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMP035 Model and Measurements of CERN-SPS Slow Extraction Spill Re-Shaping - the Burst Mode Slow Extraction 2406
 
  • M. Pari, M.A. Fraser, B. Goddard, V. Kain, L.S. Stoel, F.M. Velotti
    CERN, Meyrin, Switzerland
 
  The ENUBET ("Enhanced NeUtrino BEams from kaon Tagging") Project aims at reaching a new level of precision of the short-baseline neutrino cross section measurement by using an instrumented decay tunnel. The North Area (NA) experimental facility of the Super Proton Synchrotron (SPS) offers the required infrastructure for the experiment. A new slow extraction type, consisting of bursts of many consecutive millisecond spills within one macro spill, has been modeled and tested for the ENUBET Project. The burst-mode slow extraction has been tested for the first time at CERN-SPS, and MADX simulations of the process have been developed. In this paper the experimental results obtained during the test campaign are presented along with the results of the quality of the produced spill and comparing it with predictions from simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPMP035  
About • paper received ※ 12 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXXPLM2 Demonstration of Loss Reduction Using a Thin Bent Crystal to Shadow an Electrostatic Septum During Resonant Slow Extraction 3399
 
  • F.M. Velotti, P. Bestmann, M.E.J. Butcher, M. Calviani, M. Di Castro, M. Donzé, L.S. Esposito, M.A. Fraser, M. Garattini, S.S. Gilardoni, B. Goddard, V. Kain, J. Lendaro, A. Masi, D. Mirarchi, M. Pari, J. Prieto, S. Redaelli, R. Rossi, W. Scandale, R. Seidenbinder, P. Serrano Galvez, L.S. Stoel, C. Zamantzas, V. Zhovkovska
    CERN, Meyrin, Switzerland
  • F.M. Addesa, F. Iacoangeli
    INFN-Roma, Roma, Italy
  • A.G. Afonin, Y.A. Chesnokov, A.A. Durum, V.A. Maisheev, Yu.E. Sandomirskiy, A.A. Yanovich
    IHEP, Moscow Region, Russia
  • J.E. Borg, M. Garattini, G. Hall, T. James, M. Pesaresi
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A.S. Denisov, Y. Gavrikov, Yu.M. Ivanov, M.A. Koznov, L.G. Malyarenko, V. Skorobogatov
    PNPI, Gatchina, Leningrad District, Russia
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
  • F. Murtas
    INFN/LNF, Frascati, Italy
 
  A proof-of-principle experiment demonstrating the feasibility of using a thin, bent crystal aligned upstream of an extraction septum (ES) to increase the efficiency of the third-integer resonant slow extraction process has been carried out at the CERN Super Proton Synchrotron (SPS). With the primary aim of reducing the beam loss and induced radio-activation of the SPS, the crystal was aligned to both the beam and the septum to reduce by up to 40% the beam intensity impinging the ES and increase the intensity entering the external transfer line. In this contribution, we introduce the concept and the prototype system that was installed in 2018 before reporting in detail on the dedicated program of machine development studies carried out to characterise its performance and demonstrate operational feasibility. The performance reach and compatibility with other loss reduction techniques proposed to further increase the extraction efficiency, such as phase space folding with octupoles, is discussed in view of future high intensity operation.  
slides icon Slides THXXPLM2 [1.397 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THXXPLM2  
About • paper received ※ 15 May 2019       paper accepted ※ 28 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRB080 Automatisation of the SPS ElectroStatic Septa Alignment 4001
 
  • S. Hirlaender
    ATI, Vienna, Austria
  • M.A. Fraser, B. Goddard, V. Kain, J. Prieto, L.S. Stoel, F.M. Velotti
    CERN, Meyrin, Switzerland
  • M. Szakaly
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
 
  An electrostatic septum composed of 5 separate tanks is used to slow-extract the 400 GeV proton beam resonantly on the third integer resonance from the CERN SPS. The septa are all mounted on a single support structure that can move the ensemble coherently and, in addition, the internal anode and cathode of each tank can be moved independently. The septum is aligned to the beam by measuring and minimising the induced beam loss signals in the extraction region following an alignment procedure that is usually carried out manually at the beginning of each year. The large number of positional degrees of freedom complicates the procedure and until recently each tank was aligned one after the other semi-manually, typically requiring 8 hours. It is not uncommon that the septum has to be re-aligned later in the run taking time away from physics programme. To tackle this issue, a simplified beam dynamics and scattering simulation routine was developed to permit error studies with a large number of seeds to be carried out in a reasonable computation time. In this contribution, the simulation model will be described before the results of its exploitation to understand the efficacy of alignment procedures based on different optimization algorithms are discussed and compared to the present operational procedure. The effort culminated with the implementation of an automated alignment procedure based on a Powell optimisation algorithm that reduced the time needed to align the septum by over an order of magnitude.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPRB080  
About • paper received ※ 14 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)