Paper | Title | Page |
---|---|---|
WEZZPLS2 | EuPRAXIA, a Step Toward a Plasma-Wakefield Based Accelerator With High Beam Quality | 2291 |
|
||
Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782 The EuPRAXIA project aims at designing the world’s first accelerator based on plasma-wakefield advanced technique, which can deliver a 5 GeV electron beam with simultaneously high charge, low emittance and low energy spread to user’s communities. Such challenging objectives can only have a chance to be achieved when particular efforts are dedicated to identify the subsequent issues and to find the way to solve them. Many injection/acceleration schemes and techniques have been explored by means of thorough simulations in more than ten European institutes to sort out the most appropriate ones. The specific issues of high charge, high beam quality and beam extraction then transfer to the user’s applications, have been tackled with many innovative approaches*. This article highlights the different advanced methods that have been employed by the EuPRAXIA collaboration and the preliminary results obtained. The needs in terms of laser and plasma parameters for such an accelerator are also summarized. *- in 2017: Phys. Plasmas, 24,10,103120; Nat. Commun.8,15705; - in 2018: NIMA, 909,84-89; NIMA, 909,49-53; Phys. Rev.Acc. Beams, 21,111301; NIMA, 909,54-57; Phys. Rev.Acc. Beams, 21,052802; NIMA, 909,282-285 |
||
![]() |
Slides WEZZPLS2 [5.157 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEZZPLS2 | |
About • | paper received ※ 12 April 2019 paper accepted ※ 17 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW006 | Avoiding Emittance Degradation When Transferring the Beam From and to a Plasma-Wakefield Stage | 3594 |
|
||
Funding: European Union’s Horizon 2020 research and innovation programme under grant agreement No. 653782. The plasma-wakefield acceleration technique is known to provide a very strong accelerating gradient (GV/m), up to three orders of magnitude higher than the conventional RF acceleration technique. The drawback is a relatively higher energy spread and especially a huge beam divergence at the plasma exit, leading to an irremediable and strong emittance degradation right after its extraction from the plasma for transferring it to an application or another plasma stage. In this article, we determine the criteria to be achieved so as to minimize this emittance growth after pointing out all the parameters involved in its mechanism. Then the plasma down ramp profile is studied in a typical configuration of the EuPRAXIA project at 5 GeV. It turns out that no specific profile is needed. For minimizing emittance growth at beam extraction, it is enough to optimize the ramp length so that the Twiss parameter γ is minimized. Finally the design of an optimal transfer line allows showing that the emittance growth can be contained to less than 10% in realistic conditions when transferring the beam to a free electron laser. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW006 | |
About • | paper received ※ 09 May 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPGW026 | Status of the Horizon 2020 EuPRAXIA Conceptual Design Study | 3638 |
|
||
Funding: This work was supported by the European Union’s Horizon 2020 Research and Innovation programme under grant agreement No. 653782. The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-THPGW026 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |