Paper | Title | Page |
---|---|---|
MOPMP009 | Effect of Initial Parameters on the Super Flat Beam Generation with the Phase-Space Rotation for Linear Colliders | 442 |
|
||
Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI) Kiban B. Linear collider is a concept to realize e+e− collision beyond the limitation of the ring colliders by the synchrotron radiation. To obtain an enough luminosity, eg. 1.0·10+34 cm-2sec-1, the beam is focused down to nano-meter size with a high aspect ratio. This super flat beam is useful to improve the luminosity and to compensate the beam-beam effect, eg. Beamstrahlung. In a conventional design, the super-flat beam is produced by radiation damping in a storage ring. We propose to produce this super-flat beam with phase-space rotation techniques. We employ both Round to Flat Beam Transformation and Transverse to Longitudinal Emittance eXchange, the super flat beam can be generated by controlling the space-charge effect which spoiled the performance. We present the RFBT performance with respect to the initial conditions, i.e. beam size, initial emittance, solenoid field (strength and profile), etc. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP009 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPTS094 | Generation High-Charge of Flat Beams at the Argonne Wakefield Accelerator | 3337 |
SUSPFO132 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work is supported by the U.S. DOE contracts No. DESC0017750, DE-SC0018656 with NIU, and No. DE-AC02-06CH11357 with ANL. Beams with large transverse emittance ratios (flat beams)have received renewed interest for their possible applications in future linear colliders and advanced accelerators. A flat beam can be produced by generating a magnetized beam and then repartitioning its emittance using three skew quadrupoles. In this paper, we report on the experimental generation of∼1nC flat beams at the Argonne WakefieldAccelerator (AWA). The emittance ratio of the flat beam is demonstrated to be continuously variable by adjusting the magnetic field on the cathode. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS094 | |
About • | paper received ※ 14 May 2019 paper accepted ※ 23 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMP008 | Electron Driven Positron Source for International Linear Collider | 439 |
|
||
Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI) To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented. To linear colliders, huge amount of positron has to be provided comparing to ring colliders, because the beam is dumped after the collision. Electron Driven ILC Positron source has been designed as a technical backup of the undulator position source including the beam loading effect, etc. The design of the detail will be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPMP008 | |
About • | paper received ※ 13 May 2019 paper accepted ※ 20 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTS026 | Negative Electron Affinity GaAs Cathode Activation With CsKTe Thin Film | 1986 |
|
||
Funding: This work is partly supported by Japan-US Cooperative grant for scientific studies, Grant aid for scientific study by MEXT Japan (KAKENHI). Negative Electron Affinity (NEA) GaAs cathode is an unique device which can generate a highly polarized electron beam with circularly polarized light. The NEA surface is conventionally made by Cs and \rm O/NF3 adsorption on the cleaned p-doped GaAs crystal, but the robustness of the cathode is very limited, so that the electron emission is easily lost by residual gas adsorption, ion back-bombardment, etc. To improve the cathode robustness, NEA activation with a stable thin-film on GaAs surface according to Hetero junction hypothesis has been proposed by the author. An experiment of the NEA activation with CsKTe thin film was carried out at Hiroshima University and a significant electron emission with 1.43 eV photon was observed which strongly suggested NEA activation. The cathode showed 16 to 20 times improvement of lifetime comparing to GaAs activated with Cs and O. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPTS026 | |
About • | paper received ※ 26 April 2019 paper accepted ※ 21 May 2019 issue date ※ 21 June 2019 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |