JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for WEPRB073: CW Room Temperature Accelerating Structures

AU  - Antipov, S.P.
AU  - Avrakhov, P.V.
AU  - Gomez, E.
AU  - Kuzikov, S.V.
AU  - Vikharev, A.A.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - CW Room Temperature Accelerating Structures
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - To this day CW linear electron accelerators were based only on expensive and bulky (embedded in a cryostat) superconducting accelerating structures. CW regime can in principle be realized with normal conducting structures provided the shunt impedance is high. Such structures can be designed using dielectrics (ultra-pure ceramics in C-band and diamond in mm-waves) with ultra-low loss tangent (~10-6). The use of dielectrics allows to concentrate the electromagnetic energy density in the dielectric region and thus minimize fields and ohmic loss on metallic walls. The thermal loss in dielectric can be relatively low given the loss tangent is small. We report here the design of structures with shunt impedance on the order of 10⁴ MOhm/m, which is several orders of magnitude higher than shut impedance in copper structures in GHz and THz range. High shunt impedance makes it possible to accelerate electrons to 1 MeV using kW-level CW RF sources like magnetrons in C-band and gyrotrons in THz range. Such CW accelerators will find applications in sterilization, food irradiation, industrial radiography and cargo inspection.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 2990
EP  - 2992
KW  - impedance
KW  - operation
KW  - electron
KW  - radiation
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-WEPRB073
UR  - http://jacow.org/ipac2019/papers/weprb073.pdf
ER  -