JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for TUZZPLS3: New Method of Calculation of the Wake due to Radiation and Space Charge Forces in Relativistic Beams

TY  - CONF
AU  - Stupakov, G.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - New Method of Calculation of the Wake due to Radiation and Space Charge Forces  in Relativistic Beams
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - Radiation reaction force in a relativistic beam, also known as a CSR wakefield, is often computed using a 1D model of a line charge beam. While this model can serve as a useful tool for a quick calculation, in some cases, it may not be sufficiently accurate. In particular, this model misses the so-called compression effects associated with the change of the electromagnetic energy when the beam is compressed longitudinally or transversely. The existing 3D simulation codes that take this effect into account are often slow and are not easy to use. In this work, we propose a new approach to the calculations of radiation and space charge longitudinal forces based on the use of the integrals for the retarded potentials. Our main result expresses the rate of change of particles energy through 2D (in a 2D model) or 3D integrals for a given orbit of the beam. It generalizes the 1D model and includes the transient effects of at the entrance and the exit from the magnet. For a given beam line with known magnetic lattice, and a known distribution function of the beam, the calculation reduces to taking 2D or 3D integrals along the orbit.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 1223
EP  - 1226
KW  - radiation
KW  - wakefield
KW  - electron
KW  - space-charge
KW  - synchrotron-radiation
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-TUZZPLS3
UR  - http://jacow.org/ipac2019/papers/tuzzpls3.pdf
ER  -