JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for TUPTS079: Overcoming Multipacting Barriers in SRF Photoinjectors

TY  - CONF
AU  - Petrushina, I.
AU  - Litvinenko, V.
AU  - Narayan, G.
AU  - Pinayev, I.
AU  - Severino, F.
AU  - Smith, K.S.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - Overcoming Multipacting Barriers in SRF Photoinjectors
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - Superconducting RF (SRF) photoinjectors are considered to be a potential breakthrough in the area of high brightness electron sources. However, there is always the very important question of the compatibility of SRF cavities and high quantum efficiency (QE) photocathodes. A deposition of active elements from high QE photocathodes on the surface of a cavity makes it more vulnerable to multipacting (MP) and could affect the operation of an SRF gun. On the other side, MP can significantly reduce the lifetime of a photocathode. It is well known in the SRF community that a strong coupling, high forward power and sufficient cleanliness of cavity walls are the key components to overcome a low-level MP zone. In this paper we present a theoretical model of passing a MP barrier which could help estimate the desirable conditions for successful operation of an SRF gun. We demonstrate our results for the 113 MHz SRF photo-injector for Coherent electron Cooling (CeC) alongside with the experimental observations and 3D simulations of the MP discharge in the cavity. The results of the theoretical model and simulations show good agreement with the experimental results, and demonstrate that, if approached carefully, MP zones can be easily passed without any harm to the photocathode.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 2105
EP  - 2108
KW  - cavity
KW  - gun
KW  - electron
KW  - cathode
KW  - SRF
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-TUPTS079
UR  - http://jacow.org/ipac2019/papers/tupts079.pdf
ER  -