JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


RIS citation export for THPTS094: High Gradient Quadrupoles for Low Emittance Synchrtrons

TY  - CONF
AU  - Sharma, S.K.
AU  - Mezentsev, N.A.
AU  - Shaftan, T.V.
AU  - Smaluk, V.V.
AU  - Spataro, C.J.
AU  - Tanabe, T.
AU  - Wang, G.M.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - High Gradient Quadrupoles for Low Emittance Synchrtrons
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - A new lattice design has been proposed recently based on a Complex-Bend concept [1,2] for low emittance syn-chrotrons. The dipoles of a standard DBA lattice are replaced in the Complex Bend by high-gradient (~ 450 T/m) quadrupoles interleaved between discrete dipoles. In another version of the Complex Bend [3] the high gradient quadrupoles are displaced transversely along the beam trajectory to generate the required dipole field. In the latter version the quadrupole strength is reduced to ~ 250 T/m for a lattice that will conform to the layout of the existing NSLS-II 3-GeV storage ring. In this paper we present conceptual designs of a Halbach permanent-magnet (PM) quadrupole, a hybrid PM quadrupole, and a superconducting quadrupole, that can produce the de-sired quadrupole strengths for the Complex Bend appli-cation. REFERENCES [1] T. Shaftan, V. Smaluk and G. Wang, ’The Concept of Com-plex Bend’, NSLS-II Tech note No. 276, Jan 2018. [2] G. Wang et al., ’Complex Bend: Strong-focusing magnet for low emittance synchrotrons’, Physical Review Accelerators and Beams, 21, 100703 (2018). [3] G. Wang et al., ’Complex Bend II’, paper submitted to Physi-cal Review Accelerators and Beams.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 4332
EP  - 4334
KW  - quadrupole
KW  - dipole
KW  - focusing
KW  - vacuum
KW  - lattice
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-THPTS094
UR  - http://jacow.org/ipac2019/papers/thpts094.pdf
ER  -