JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for THPTS019: Design of Beam Position Monitoring System for IPM Low Energy Electron LINAC

AU  - Messbah, N.
AU  - Abbasi Davani, F.
AU  - Ahmadiannamin, S.
AU  - Shaker, H.
AU  - Shirshekan, M.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - Design of Beam Position Monitoring System for IPM Low Energy Electron LINAC
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - A beam position monitor (BPM) is a common device used in particle accelerators to measure the position of a beam of charged-particles. The goal of this project is to simulate and build prototype of different parts to be used for IPM low energy electron Linac being developed at Institute for Research in Fundamental Sciences. The IPM low energy electron Linac will initially be operated at a 7𝜇sec pulse duration and 250 Hz repetition rate with 2.998 GHz bunching frequency. A 4.5-MeV electron beam will be available in the second phase of commissioning. The device is composed of two pickup S-band cavities and a detection circuit to read out the electron beam’s position. The electrode pickup sensors will sense the mode strength generated by the passing beam of electrons. The working modes are TM110 (dipole) for the so called position cavity and TM010 (monopole) for the reference cavity. When the beam crosses the two cavity gaps it induces signals proportional to the product of charge and position offset in the position cavity, and to the charge only in the reference cavity. the position cavity has four rectangular waveguides that couple to the dipole mode while rejecting the monopole mode that would otherwise limit the resolution of the electronics. This signal will be input to a detection circuit that will be used to calculate the signals detected by four antennas arranged. A 180 degree hybrid at the first stage reduce the monopole and a heterodyne receiver principle was used to down-convert the signal frequency in about MHz IF frequency. These signals can then be used to determine the beam’s displacement from the center.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 4394
EP  - 4396
KW  - cavity
KW  - electron
KW  - simulation
KW  - software
KW  - linac
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-THPTS019
UR  - http://jacow.org/ipac2019/papers/thpts019.pdf
ER  -