JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for THPGW078: Prototyping of Brazed mm-Wave Accelerating Structures

AU  - Othman, M.A.K.
AU  - Angier, B.J.
AU  - Haase, A.A.
AU  - Nanni, E.A.
AU  - Roux, M.R.
AU  - Sy, A.V.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - Prototyping of Brazed mm-Wave Accelerating Structures
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - Advanced fabrication and prototyping of metallic RF structures play a fundamental role in advancing accelerator technologies particularly at mm-wave and THz frequencies. With the scaling of the RF structure up to these frequencies, conventional fabrication techniques do not achieve the required accuracy and tolerances. Improved manufacturing techniques including diffusion bonding, brazing or clamping split-block geometries produce high quality structures when successfully implemented. However, in most schemes the resulting gap and irregularities at the iris result in a local field enhancement which is not desirable for high-gradient operation. Development of advanced split-block braze technique for THz accelerators was required for high quality miniature accelerators. A new braze technique was developed for W-band structures to control the flow of braze alloy, enabling fabrication of the first high-gradient brazed structures at mm-wave frequencies. This fabrication process has the potential to overcome consistent fabrication defects around the cell iris. Thin spacers were used to set the final gap between blocks during the braze process; while braze foil thickness is varied with minimal impact on the resulting frequency. To demonstrate the robustness of this technique, testing after the various manufacturing steps was done to monitor and track frequency change throughout the process. This technique is further pushed to produce G-band RF structures, operating at 300 GHz.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 3764
EP  - 3765
KW  - cavity
KW  - resonance
KW  - simulation
KW  - RF-structure
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-THPGW078
UR  - http://jacow.org/ipac2019/papers/thpgw078.pdf
ER  -