JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for MOPRB116: Laser Sculpted Cool Proton Beams

AU  - Gibson, S.M.
AU  - Alden, S.E.
AU  - Nevay, L.J.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - Laser Sculpted Cool Proton Beams
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - Hydrogen ion accelerators, such as CERN’s Linac4, are increasingly used as the front end of high power proton drivers for high energy physics, spallation neutron sources and other applications. Typically, a foil strips the hydrogen ion beam to facilitate charge-exchange injection of protons into orbits of high energy accelerators, in which the resulting emittance is dominated by phase-space painting. In this paper, a new method to laser extract a narrow beam of neutralised hydrogen from the parent H⁻ ion beam is proposed. Subsequent foil stripping and capture of protons into a storage ring generates cool proton bunches with significantly reduced emittance compared to the parent beam. The properties of the extracted proton beam can be precisely controlled and sculpted by adjusting the optical parameters of the laser beam. Recirculation of the parent beam allows time for space-charge effects to repopulate the emittance phase space prior to repeated laser extraction. We present particle tracking simulations of the proposed scheme, including the laser-particle interaction with realistic optical parameters and show the resulting emittance is reduced. Developments for an experimental demonstration of a laser controlled particle beam are outlined. In principle, the proposed scheme could considerably reduce the emittance of protons bunches injected into an accelerator, such as the LHC.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 826
EP  - 829
KW  - laser
KW  - emittance
KW  - linac
KW  - proton
KW  - simulation
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-MOPRB116
UR  - http://jacow.org/ipac2019/papers/moprb116.pdf
ER  -