JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for MOPRB075: Radiation Limits on Permanent Magnets in CBETA

AU  - Kostroun, V.O.
AU  - Gulliford, C.M.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - Radiation Limits on Permanent Magnets in CBETA
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - The Cornell Brookhaven Energy Recovery Linac Test Accelerator (CBETA), under construction at Cornell, uses Fixed Field Alternating Gradient (FFAG) Halbach magnets made from grade N35EH NdFeB. To reduce the 1% level magnetization errors in fabricated blocks to magnets with better than 0.001 field accuracy, iron wire shimming is necessary. This also limits magnetization changes by external influences to the ~1% level. The ambient radiation field present during CBETA operation can induce permanent magnet demagnetization. The radiation field arises from electrons in the beam halo hitting the vacuum chamber and from residual gas, Touschek and Intra-Beam scattering. The radiation dose rate due to electrons striking the vacuum chamber of a 4 cell straight section of CBETA FFAG magnets was calculated using the many particle Monte Carlo radiation code MCNP6.2. MCNP6.2 has a track-length heating tally for different particles and a collision heating tally that gives energy deposition/mass from all particles in the problem. Calculations show that electron loss has to be a fraction of a watt/m to keep the dose rate at an acceptable level during the accelerator lifetime.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 745
EP  - 747
KW  - radiation
KW  - electron
KW  - vacuum
KW  - permanent-magnet
KW  - focusing
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-MOPRB075
UR  - http://jacow.org/ipac2019/papers/moprb075.pdf
ER  -