JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for MOPGW107: Study of Integrable and Quasi-Integrable Sextupole Lattice

AU  - Gupta, L.
AU  - Baturin, S.
AU  - Kim, Y.K.
AU  - Nagaitsev, S.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - Study of Integrable and Quasi-Integrable Sextupole Lattice
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - In order to maximize beam lifetime in circular particle accelerators, the nonlinear beam optics are optimized to maximize the dynamic aperture of the beam. The dynamic aperture (DA), which is a 6-D phase space volume of stable trajectories, depends on the strength of the nonlinearities in the machine, and is calculated via particle tracking. Current DA optimization processes include multi-objective genetic algorithm optimizers, and relies on minimizing the magnitudes of resonance driving terms (RDT), which are calculated from the nonlinear contribution to the one-turn-map. The process of searching through the parameter space for an ideal combination that maximizes DA is computationally strenuous. By setting up the sextupole channel such that it is resembles a symplectic integrator of a smooth Hamiltonian, with only a few sextupoles we are able to closely reproduce phase space trajectories of a smooth Hamiltonian up to the hyperbolic point. No chaos and resonances are observed if phase advance per one sextupole magnet in the channel does not exceed ~0.12x2 pi. Therefore, an important property of the suggested approach is the intrinsic elimination of the resonances, and minimization of corresponding RDTs.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 371
EP  - 374
KW  - sextupole
KW  - resonance
KW  - focusing
KW  - lattice
KW  - optics
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-MOPGW107
UR  - http://jacow.org/ipac2019/papers/mopgw107.pdf
ER  -