JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

RIS citation export for MOPGW070: Longitudinal Stability of the Hollow Ion Bunches After Momentum Slip-Stacking in the CERN SPS

AU  - Argyropoulos, T.
AU  - Lasheen, A.
AU  - Quartullo, D.
AU  - Shaposhnikova, E.N.
ED  - Boland, Mark
ED  - Tanaka, Hitoshi
ED  - Button, David
ED  - Dowd, Rohan
ED  - Schaa, Volker RW
ED  - Tan, Eugene
TI  - Longitudinal Stability of the Hollow Ion Bunches After Momentum Slip-Stacking in the CERN SPS
J2  - Proc. of IPAC2019, Melbourne, Australia, 19-24 May 2019
CY  - Melbourne, Australia
T2  - International Particle Accelerator Conference
T3  - 10
LA  - english
AB  - Momentum slip-stacking is planned to be used for the lead ion beams in the CERN SPS to double the beam intensity for the High-Luminosity LHC project. During this RF manipulation two SPS batches, controlled by two independent RF systems, are going to be interleaved on an intermediate energy plateau, reducing the bunch spacing from 100 to 50 ns. However, there are limitations how close the frequencies of two RF systems can approach each other, resulting in a hole in the longitudinal bunch particle distribution due to the offset in energy of the recaptured bunches. After filamentation, these bunches should be further accelerated to the SPS top energy, before extraction to the LHC. Macro-particle simulations have shown that Landau damping is lost for the bunches with the smallest longitudinal emittances in the batch, causing un-damped oscillations of the bunch core after recapture. The standard application of an additional, fourth harmonic RF system, successfully used in proton operation, was not able to damp the oscillations at top energy, while it was necessary to switch it on from the moment of recapture. In this paper the longitudinal stability of the bunches after slip-stacking is studied in more details both by macro-particle simulations and analytical calculations.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 254
EP  - 257
KW  - simulation
KW  - emittance
KW  - damping
KW  - synchrotron
KW  - proton
DA  - 2019/06
PY  - 2019
SN  - 978-3-95450-208-0
DO  - DOI: 10.18429/JACoW-IPAC2019-MOPGW070
UR  - http://jacow.org/ipac2019/papers/mopgw070.pdf
ER  -