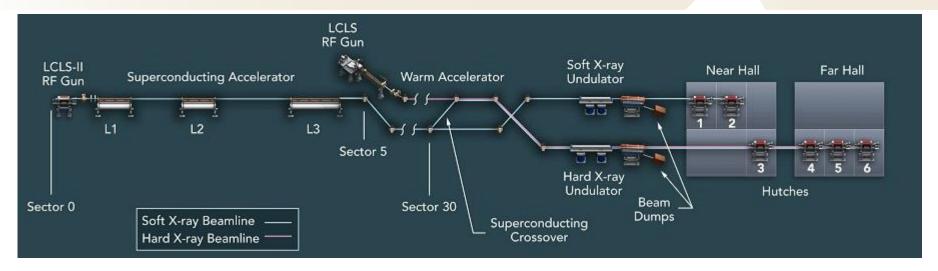
Instrumentation and Controls for a High Repetition-rate Superconducting Linac

Tim Maxwell for the LCLS-II Collaboration Tuesday, May 1, 2018

TUZGBD1

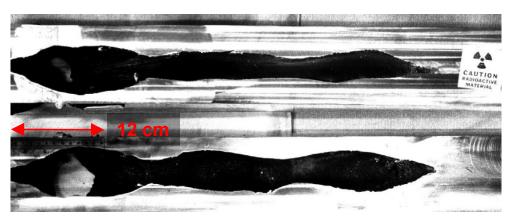


e-beam Parameters	Copper Linac	Supercond. Linac	
Energy	3-16 GeV	4 GeV	
Max beam power	5 kW	120 kW (per undulator line)	
Max repetition rate	120 Hz	0.929 MHz	
Charge	250 pC, typ.	100 pC, typ. (power limited)	
Trans. emittance (normalized)	0.5 μm	0.5 μm	
Slice energy spread (RMS)	< 0.02%	< 0.02%	
Peak current	1 – 5 kA	0.5 – 1.5 kA	

The LCLS-II: Demanding diagnostics & controls

SLAC

- High rate Single-pass, µs spacing (fast readout)
- High complexity Multiple beam destinations (controls)
- High brightness Diagnostics for FEL-quality bunches


High Power

Safety: The SLAC Beam Containment System (BCS)

Original SLAC BCS for 3 km, 50 GeV SLC linac w/ 8 beamlines

- Uncontained 30 W beam directly hit shielding produced 360 R/hr dose rates outside 1.8 m concrete
- Average powers from 165 to 880 kW demonstrated the highly destructive capability of such beams:
 - Rapid burn-through of materials in collimators and PPS stoppers (~seconds)
 - Call for "an extensive electronic system to prevent damage to mechanical devices and to detect onset of destruction"
 - Resulting BCS was "Reliable and essential to the operation of high-powered interlaced beams being delivered to a number of different experimenter beamlines"

Picture: Test of copper stopper (52 X_0) after 9.5 s @ 880 kW, <u>SLAC-PUB-1223</u> (1973)

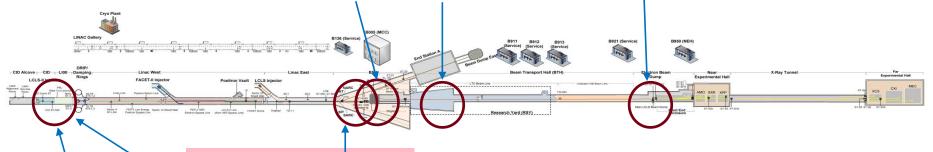
BCS details: IEEE Transactions on Nuclear Science, Vol. NS-24, No.3, p. 1583 (1977)

Beam Containment is not Machine Protection

Machine Protection – Prevent damage to machine

Beam Containment – Prevent/detect radiation outside of predetermined safety envelope

BCS Sensor Technologies Overview


SLAC

Sub-system	Reason	# Units	In development	Existing
Average Current Monitors	Limit Beam Power	12	Sensor, electronics, FPGA	
Magnet Current Monitors	Limit Beam Power, Protect Safety Devices	32		Sensor
Fiber Loss Monitors	Limit Beam Loss	90	Sensor, electronics	
Bremsstrahlung power monitor/BSOICs	Limit Beam Loss	2	Sensor, electronics	
Cooling Water Panels	Protect Safety Devices	12		Sensor
Diamond Loss Monitors	Protect Safety Devices	122	Sensor, electronics	
Rastering monitor	Protect Safety Devices	1	Electronics	
FEL Collimator diodes	Protect Safety Devices	18	Photo-diode, electronics	
BCS Absorber diodes	Protect Safety Devices	1	Photo-diode, electronics	
FEL Intensity Monitor/Interlock	Protect Safety Devices	1	PLC, gap monitor	Magnet current monitor sensors, toroids

BCS Design Requirements

SLAC

- BCS should consist of overlapping and type-redundant fault detection devices and beam shut-off systems to serve four purposes:
- (1) Limits personnel dose outside of housing from mis-steered beams (Iimits beam loss)
 - (2) **Protects** the integrity of devices that contain the beam from damage e.g. PPS stoppers, beam dumps, collimators

- (3) Limits beam power and keeps it within designated safe channels
- (4) Acts to turn the electron beam off if an unsafe condition arises

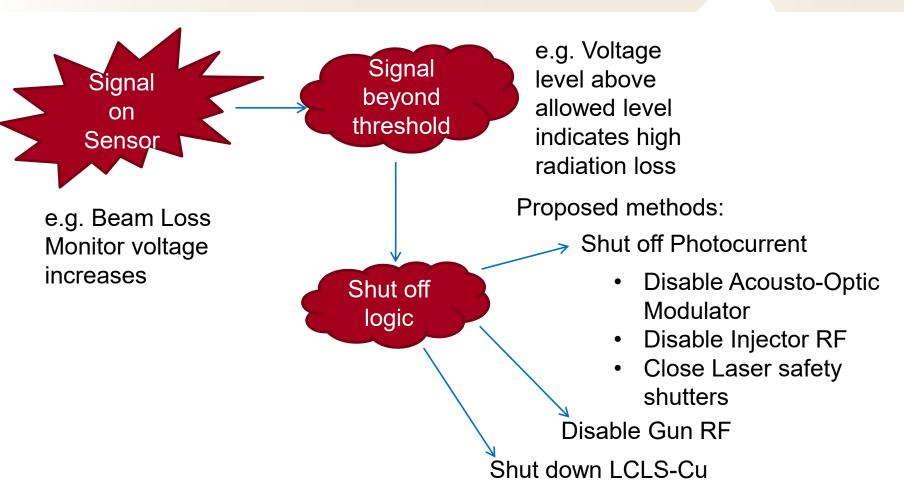
BCS devices must be:

Tamper-proof

Configuration Controlled

Documented

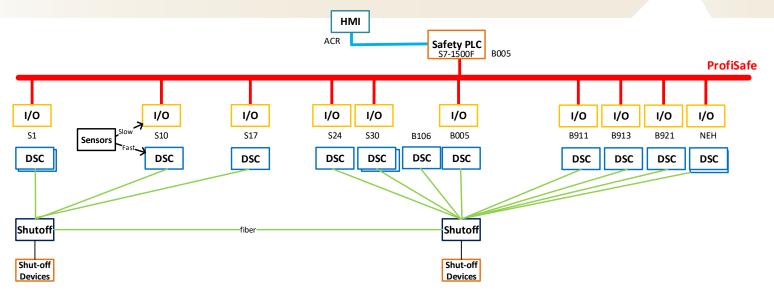
Self-monitoring where feasible


Fail safe

Reviewed

What happens if a hazardous situation is detected?

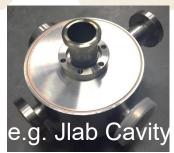
SLAC

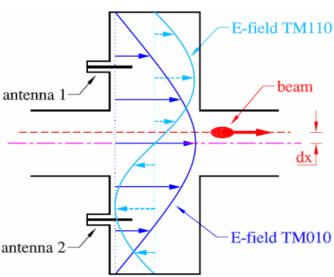


Developing/testing multiple shut-off devices with diverse technologies

SLAC

- Two ways to connect a sensor to shut-off path:
 - Direct copper or fiber connections for < 200 μs shut off time
 - To Safety PLC (Siemens S7) for < 1 second response time
- Desirable to use safety PLC where possible for improvements over custom built relays in maintenance and diagnostic availability in control room
- Two chain ("A" and "B") redundancy in implementation at each level


Architecture spans full 4 km complex and can perform shut-off < 200 us

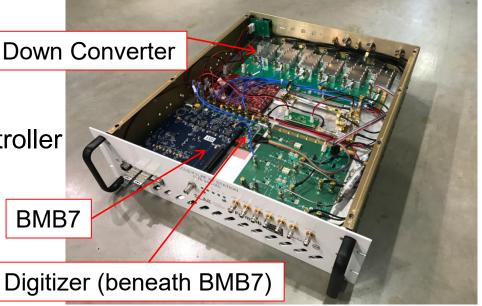


Average Current Monitors (ACMs)

SLAC

- Developing a cavity based solution to measure average current of the beam
 - Based on similar devices used at Jlab
- Electric field of beam passing along axis of cavity excites resonator modes
- Monopole mode is proportional to the bunch charge
- Part of field energy is extracted through probes
- Two probe ports go to redundant Chain A Chain B electronics for signal processing
- Cavity Pros
 - Low baseline drift
 - Good sensitivity
 - Can detect dark current
- Cavity Cons
 - Needs to be temperature controlled
 - Calibration needs to be against other diagnostics

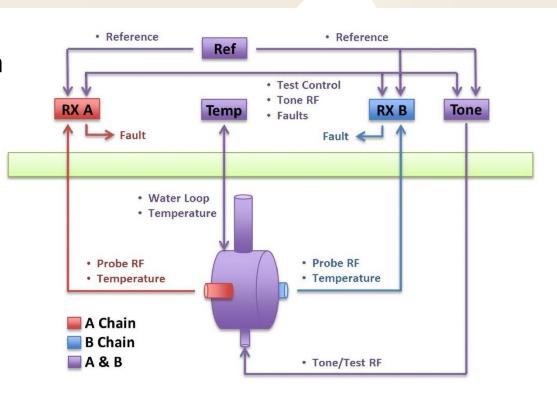
Beam Position Monitors, *Peter Forck, Piotr Kowina, Dmitry Liakin*


We are developing cavity-based average current monitors for BCS

ACM Signal Processing

SLAC

- ACM Chassis modified from LCLS-II LLRF Chassis
- Fermilab LLRF down converter design
- BMB7 FPGA design from LBNL
- FPGA will have separate programmers for Chain A Chain B FPGAs
 - Work from same specification
 - Diversity in firmware
 - Test bench developed by independent party
- Xilinx Soft Error Mitigation Controller
 - Self-monitoring FPGA
- If measured current > allowed
 - → ACM fault

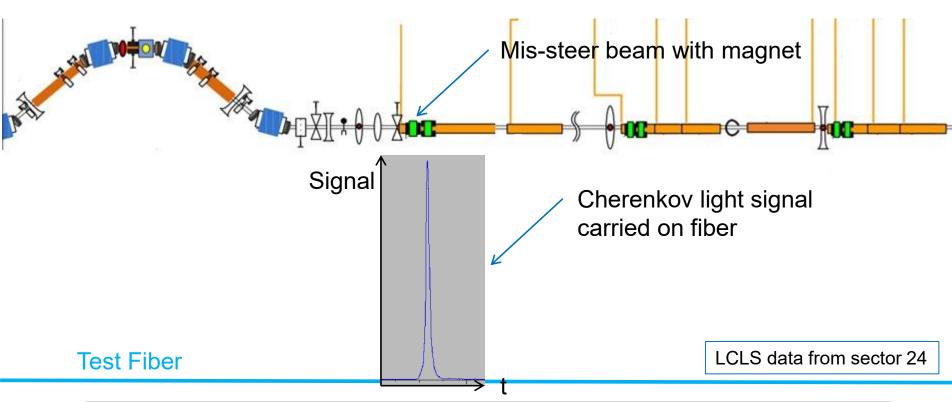


SLAC/JLab/FNAL/LBNL collaboration to develop ACM electronics /firmware

ACMs Self-Monitoring

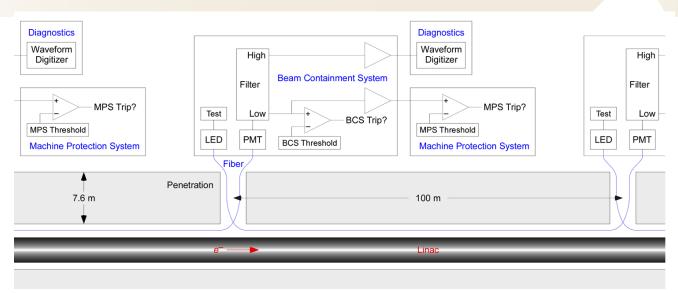
SLAC

- Self test uses a pilot tone
- 100 kHz off frequency from 1300 MHz carrier
- Chain A, B electronics compare pilot tone feed to measurement from cavity
- If detected pilot tone signal drifts → ACM fault
- Pilot tone also used to verify ACM fault on overcurrent
- Temperature monitored


The ACMs under development will be self-checking: continuous monitoring of pilot tone provides end-to-end verification

Cherenkov light from irradiated fibers

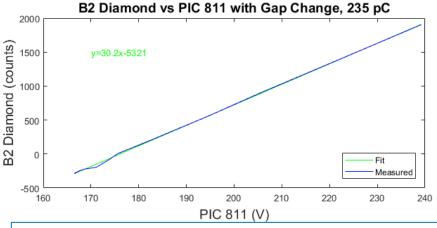
SLAC


- Particles from radiation showers generate Cherenkov light in fiber core
- Light can be trapped and transported in the fibers over ~100 200 m

We are developing Cherenkov-fiber detectors for BCS to sense potentially hazardous levels of radiation

Cherenkov Fiber Deployment

- Cherenkov light detected with PMT and integrated in electronics
- If signal > pre-set trip threshold, then → Fault
- Known issue: Fiber darkens with radiation
 - CERN studies show practically no attenuation above 700 nm
 - We mitigate radiation damage effects by using red filter and PMT
- Self-monitoring can be achieved with a red LED at upstream end to produce "keep alive" signal

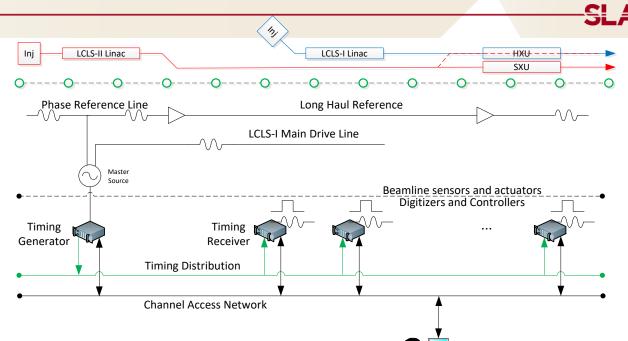

Developing fail-safe/self-monitoring implementation for Cherenkov fibers

Diamond Detectors for protecting safety devices from e-beams

- At high power, collimators can be burnt through ~1s
 - Onset of stress damage in us
 - Melting onset ~ms
- Burn-through triggers shut off with integrated monitor
 - Already a 3 rem event, one-use
- → Need to terminate as fast as possible
- Diamond detectors with a voltage applied across them act as a solid state ionisation chamber
 - Nanosecond time resolution
 - Radiation hardness
 - Heat resistance
 - Simple deployment (no gas or cooling)
- Modulating the HV produces a signal for self-check

https://cividec.at

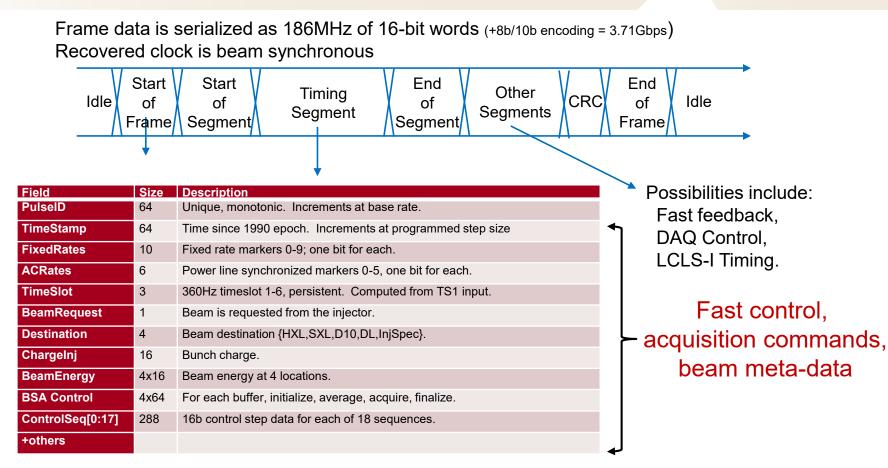
Cross-check with gas ionisation chambers at LCLS


Developing diamond sensors for localized detection of high power electron beam in undesired places

High Rate, High Complexity LCLS-II Timing System

Phase Reference

Timing Distribution



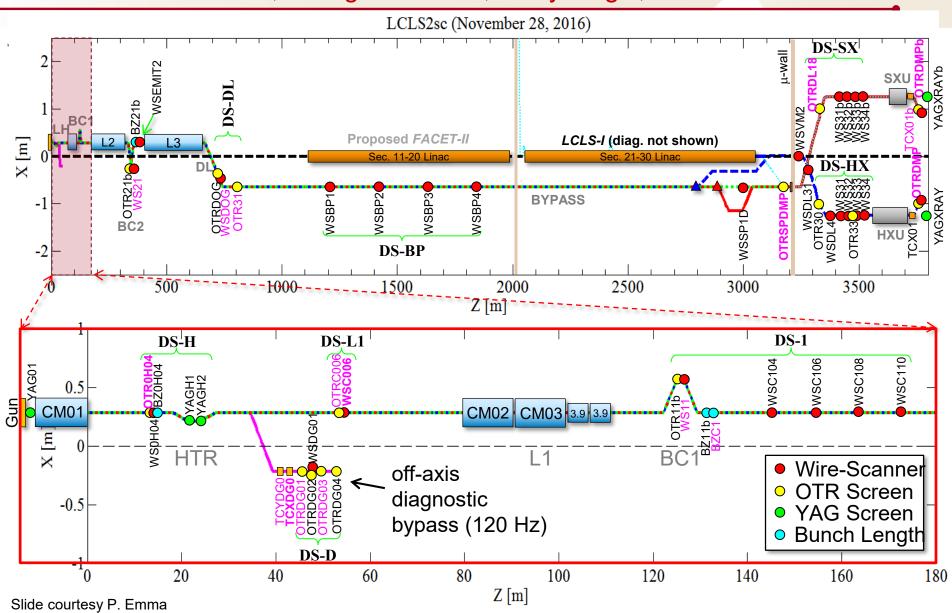
- Need flexibility in timing pattern control
 - Arbitrary bunch trains from 1 Hz to 1 MHz to multiple destinations
 - Beam synchronous data acquisition per bunch at 1 MHz
- Timing data now also includes expected bunch charge and other beam parameters - metadata

Timing Pattern and Fast "Beam Loss" Measurement

SLAC

 Allows diagnostic devices to e.g. instantaneously flag if measured charge on a single bunch does not agree with expected value for MPS

High Brightness Diagnostic devices for LCLS--II



SLAC

- **Beam Position Monitors (BPMs)** (255, strip-lines, cavity, and cold-buttons)
- YAG Screens (6, x & y beam profile thick screen)
- OTR Screens (14, x & y beam profile sensitive to μ-bunching)
- Wire-Scanners (31, x or y beam profile fast scans needed at ~0.3 m/s)
- Transverse RF Deflectors (1-3, allow time-resolved bunch measurements)
- **Rel. Bunch Length Monitors** (4, relative bunch length for feedback)
- Beam Loss Monitors (BCS and MPS loss detection)
- Micro-Bunching Detector (not in baseline yet)
- Beam Toroids (< 2 MHz only does not see gun dark current)</p>
- Average Current Monitors (BCS, cavity based, new)
- **Faraday Cups** (2, absolute bunch charge FC after gun temporary)
- Bunch Arrival Time Monitors (cavities, not in baseline yet)
- RADFETs (long term undulator loss management)

LCLS-II e Diagnostics Map

Not included: BPMs, Charge Monitors, X-ray diag's, Beam Loss Monitors

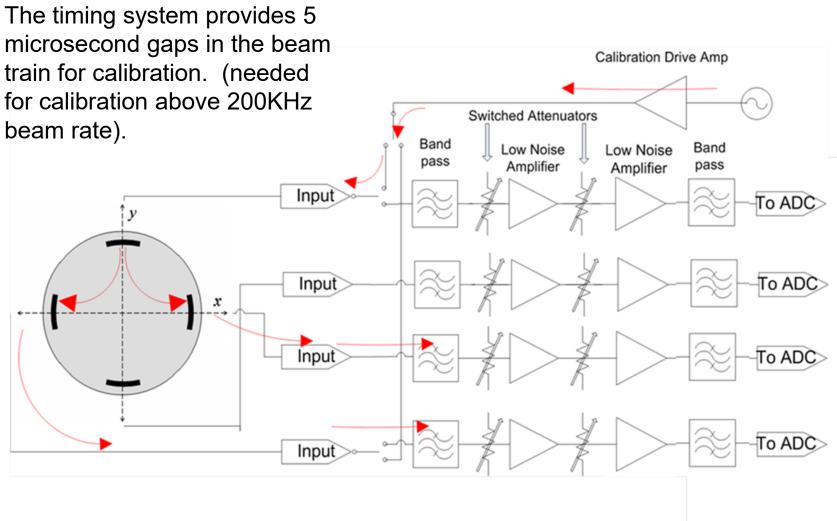
Beam Position measurement

Continue to use stripline BPMs, as in LCLS-I

- Even though resolution is limited to a few microns
- 10's µm at low 10 pC charge per bunch foreseen for LCLS-II
- Not adequate for position jitter correction at wire scanners
- But... less expensive than cavity BPMs

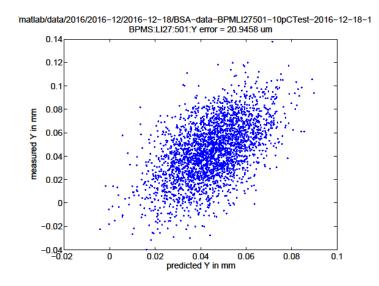
Added for LCLS-II

Cold, button BPMs in the cryomodules


Improved for LCLS-II

 RF cavity BPMs used in the undulator region where submicron resolution is essential for beam-based alignment in the FEL

Stripline Signal Processing


SLAC

Beam Position Monitors – Stripline BPMs

- Same concept as existing LCLS BPMs
 - Strip signals ring a bandpass filter
 - Signals from all four channels digitized
 - Online calibration by injecting a pulse down one strip and reading induced signal in adjacent strips
 - Calibrates position center and sensitivity, but not charge
- Same 30MHz bandwidth as LCLS, but with faster digitizer and FPGA based processing for high beam rate
 - Better than the 30um resolution at 10pC spec
 - Resolution NOT good enough for jitter correction for wire scanners at low charge. (Need cavity BPMs for that.)

Cold BPMs

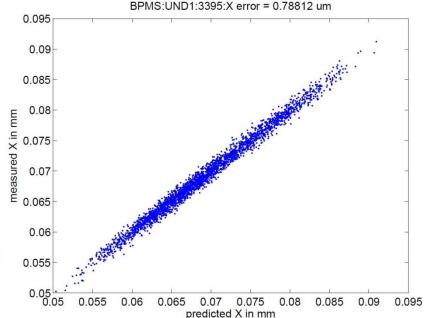
SLAC

- Fermilab design: 20 mm buttons
- Use Stripline Front-end electronics
- 200 um resolution at 10 pC

Lunin *et al* model button response for several versions of the button in CST Particle Studio reporting in IBIC 2014 paper <u>TUPF18</u>.

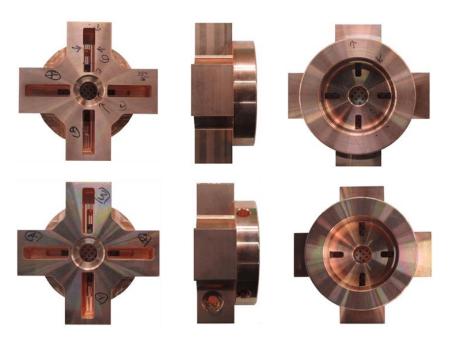
Figure 1. CST model of the button pickup (right) and a snapshot of the instant electric field induced by 1 mm bunch.

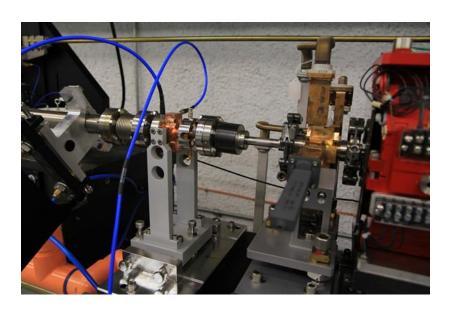
X-band RF Cavity BPMs


SLAC

- Cavity BPMs
 - Better resolution than Striplines,
 - ~1µm at 10pC (250nm in Undulator at 150 pC)
- Developed in collaboration with Pohang Accelerator Laboratory
- 11.424 GHz opertion insensitive to dark current from 1.3 GHz SC linac
- But at harmonic of multi bunches in S-band Cu linac

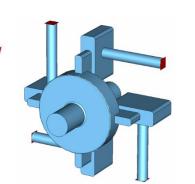
PAL X-Band Prototype

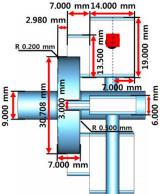




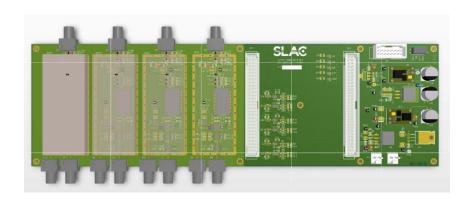
atlab/data/2016/2016-12/2016-12-18/BSA-data-BPMUND13395-10pCTEST-2016-12-18

SLAC-Pohang X-band Cavity BPM Design For LCLS-II


SLAC



New Features:


- Abolish waveguide and windows
- Coaxial feedthroughs
- Simplified fabrication & tuner design
- Cavity freq centered on beam harmonic

New SLAC Receiver Board & Chassis for LCLS-II

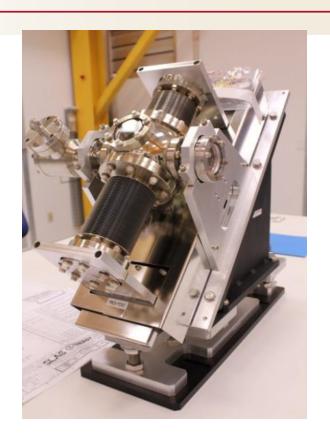
Mounted beneath the BPM and connected by coaxial cable.

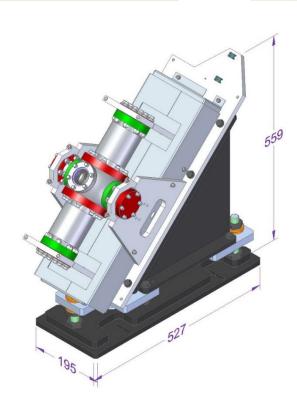
Uses a monolithic IQ downmixer chip in place of the old Miteq waveguide mixer – Andrew Young

Beam Size and Emittance Measurement

SLAC

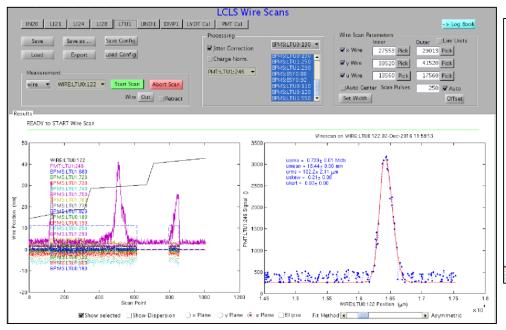
Profile monitor screens enable single shot, invasive measurement of transverse intensity distribution

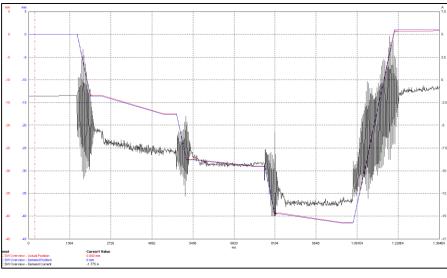

- COTR
 - Highly compressed bunches produce coherent tails out into the optical range
 - In FEL linacs very short, low energy spread beams also give rise to microbunching instability
 - Worse in LCLS-II due to impedance of long transfer lines
 - Coherent spectrum radiates COTR orders of magnitude brighter than normal beam image.
- Screens will also not survive high rep. rate in CW machines


Alternative #1: wire scans – projected beam size in one plane, averaged over multiple shots.

Fast Wire Scanners Developed at the LCLS

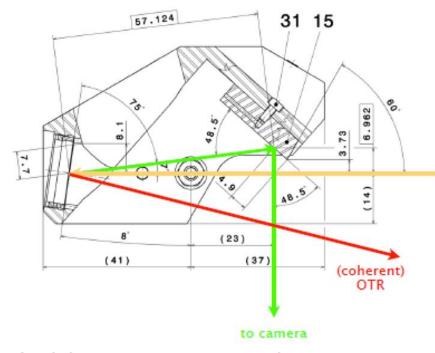
SLAC




- Linear DC servo motor acting through dual bellows at 45°
- High speed greatly reduces emittance measurement and tuning time
- 1 MHz beam at LCLS-II requires 0.5 m/s wire speed
 - (but also possibility to be slow enough for lower rate, 10-100 Hz beams!)

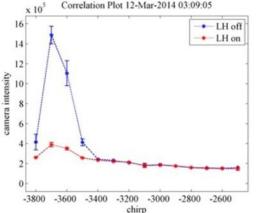
Operational Lessons Learned

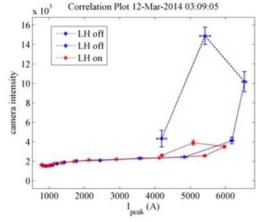
- Stray motor magnetic fields can disturb beam
 - Especially at low energy
 - Add mu-metal shielding
- Position encoder is read back synchronously with the beam
 - But also need to monitor motor current
 - PID servo loop can be unstable in regard to motor current
- Pulsed motor drive install req's careful ground loop analysis


COTR Suppression with PSI Profile Monitor

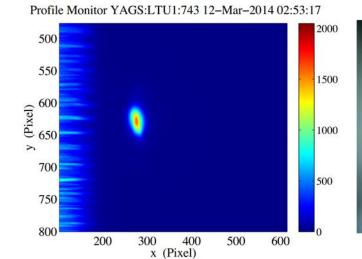
R. Ischebeck, et. al, PRSTAB 18, 082802 (2015)

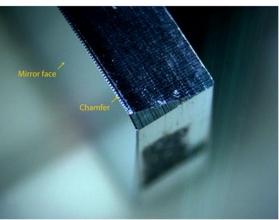
- View fluorescence from 30 mm YAG, COTR directed away from camera
- Observe at Snell angle to account for refraction in finite thickness crystal
- Camera image plane at Scheimpflug angle to maximize depth of field
- Developed by R. Ischebeck (PSI) and tested at the LCLS


Effectiveness of COTR Mitigation

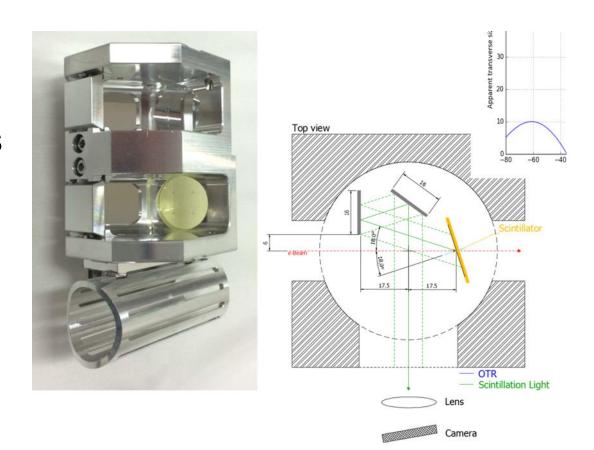

SLAC

The peak current varied from 1 - 6 kA via chirp upstream of BC2


Camera image intensity ~constant except at shortest bunch length and the


laser heater is off

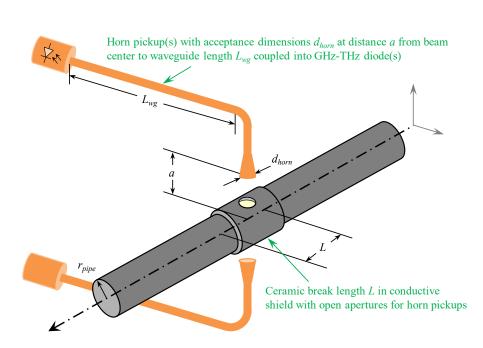
Residual CDR from the edge of the mirror

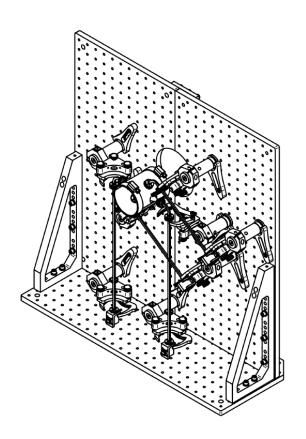

Next Iteration from PAL

SLAC

 The design developed at Pohang Accelerator Laboratory uses two mirrors to increase the distance from the mirror edge to the beam from 3 mm to 6 mm, preserving optimum viewing angles used by PSI

 The PAL profile monitor under testing at the LCLS this year




Picosecond Relative Bunch Length Monitors (Injector buncher & BC1)

SLAC

- Sub-THz, narrow-band pickup waveguides + diodes
- View through ceramic breaks
- Vacuum-side thin metallic coating on ceramic to avoid charge pile up
- 2 diode frequencies x 2 diodes each

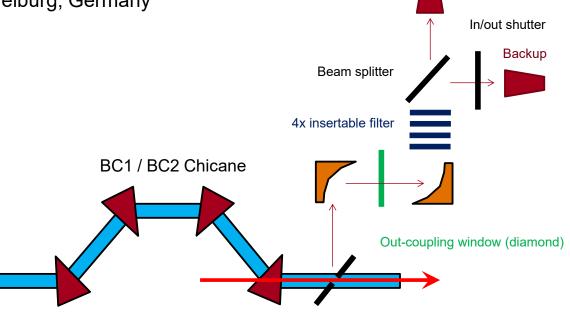
Femtosecond Relative Bunch Length Monitors (BC1 & BC2)

Primary

Broadband coherent edge radiation detection

Spectral control: 2x Long-pass filters

Power control: 2x ND filters

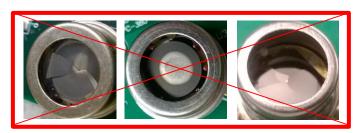

Redundancy: 2x Pyro detectors

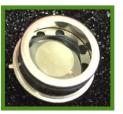
Copper, water-cooled extraction mirror

50 mm diamond window in water-cooled flange

- Diamond Materials, Freiburg, Germany

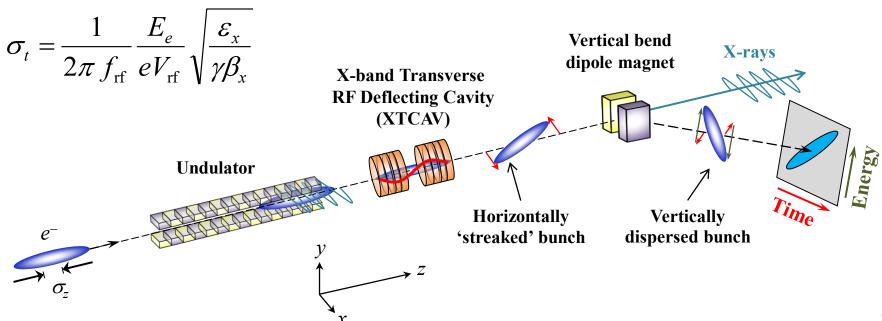
Femtosecond Relative Bunch Length Monitors (BC1 & BC2)




- Fast (250 ns) SLAC Q-V convertor/amplifier for detector
- High power & sensitivity pyros from Gentec-EO
- Temperature monitored/interlocked
- MPS interlock to excessive peak signal fault
 - Protect pyro *and* other components from coherent radiation power in bends

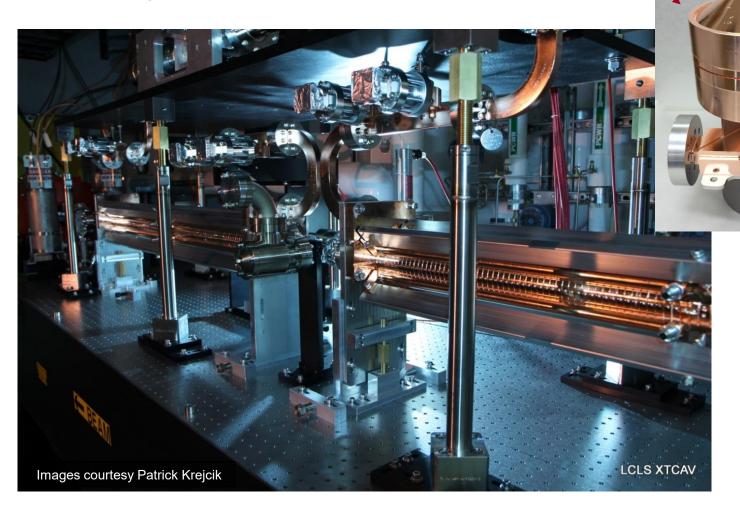
High-power, fs-pulse IR laser testing

Misc. offthe-shelf articles


Custom Gentec-EO pyro 2 W sustained (40°C) 6 W maximum

- SLAC
- Upstream diag. bypass deflectors not in baseline (\$\$\$\$\$)
- LCLS-II does inherit another old friend...

The LCLS X-band Transverse Deflector w/ few fs resolution

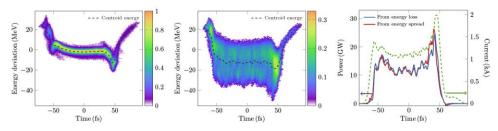


Pulsed operation at up to 120 Hz

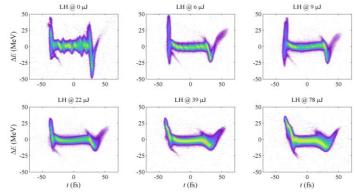
SLAC

Plus compact (< 12 cm) X-band SLAC linac energy doubler \

• J. Wang, et al., IPAC 2016, MOOCA01

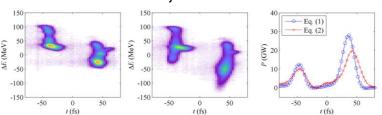


Versatile tool to carry forward



Proposed: Y. Ding, et al., PRST-AB 14, 120701 (2011) Demonstrated: C. Behrens, et al., Nat. Comm. 5, 3762 (2014)

Applications: T. Maxwell, Proc. SPIE 9210, XFELs, 92100J (2014).


Laser heater studies

D. Ratner, et al., PRAB 18 030704 (2015)

- HXR dump YAG screen to be relocated off axis
- Will operate XTCAV just off zero crossing to kick + streak beam to YAG
- Cu cavity pulses to pick bunches from higher bunch train rates

Two bunch, two color modes

A. Marinelli, et al., Nat. Comm. 6, 6369 (2015)

SLAC

- MOZGBD3 N. Solyak (FNAL), First LCLS-II Cryomodules: Issues & Solutions
- WEPML001,3,4 J. Holzbauer (FNAL), *Microphonic Mitigation & Precision* Q₀ *Measurement/Tuning*
- THYGBE3 C. Serrano (LBNL), RF Controls of High Loaded Q Cavities for the LCLS-II
- THPAK153 X. Huang (SLAC), Linac Optics Correction with Trajectory Scan

SLAC

Additional thanks to:

C. Clarke, P. Krejcik, P. Emma, D. Bohler, M. Boyes, A. Brachmann, F.J. Decker, Y. Ding, P. Emma, A. Fisher, J. Frisch, M. Guetg, Z. Huang, A. Lutman, A. Marinelli, A. Novokhatski, J. Sheppard, M. Weaver, A. Young, E. Williams, F. Zhou

Also thanks to collaborators at PAL, PSI, DESY/EuXFEL

