

Traditio et Innovatio

Studies of horizontal instabilities in the CERN SPS

Mario Beck - 01. May 2018 - IPAC 2018 Vancouver, Canada

Motivation for the studies

- For the LIU project the SPS is supposed to accelerate intensities, nearly twice as high as the current ones.
- Understanding the horizontal single bunch instabilities occurred during recent high intensity (2e11 ppb) multi-bunch runs in the SPS.

 Studies to validate the horizontal impedance model have been extended to study instabilities occurring for high intensities in the horizontal plane.

PyHEADTAIL Simulation

Observations in the machine

- Single-bunch measurements in the SPS.
- Validating the simulations. (The simulation here was run with the parameters of the measurement)
- Intensity = 2e10 ppb and ε_z = 0.35 eVs.

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

-2

Δx [a. u.]

01 May 2018

0

time [s]

1

1e-9

 $^{-1}$

time [s]

1e-9

Octupole scan

Trying to use the Landau octupoles in the SPS with their magnetic strength K_{LOF} to damp a mode zero provoked by negative chromaticity.

Conclusion

- Simulations show that for higher bunch intensities a horizontal mode one can develop in the SPS in chromaticity regions where it has not been observed before. The instability can be damped using higher chromaticities.
- The simulations have been validated by measurements.
- Landau damping introduced by octupoles has been studied as an alternative to stabilize the beam. A measured octupole scan showed that reasonable magnetic strength values are sufficient to damp instabilities.

Traditio et Innovatio

Thank you for your attention !

Non–linearities in the SPS

Measured fractional tune in the SPS (Q20). Data was used for the non-linear simulations.

