XFEL Impedance Effects and Mitigation

M. Dohlus IPAC 2018 May 01

The European XFEL About FELs and Wakes A Measurement

The European XFEL

main linac, $L_{tot} = 1179 \text{ m}$ $L_{act} = 640 \times 1.038 \text{ m} = 664 \text{ m}$

SASE1 L_{tot} = 225 m

L_{act} = 35 × 5 m = 175 m

Compression Scenario \rightarrow **BCO** \rightarrow

ightarrow BC1 ightarrow

ightarrow BC2 ightarrow

 $\textbf{BC1} \rightarrow \textbf{SASE1} \rightarrow \textbf{SASE3} \rightarrow \textbf{dump}$

Impedance Budged before Undulator

accelerator wakes for Q = 1nC

total energy spread ≈ 35.3 MeV

In the Undulator

SASE1: $L_{tot} = 225 \text{ m}$ $L_{act} = 35 \times 5 \text{ m} = 175 \text{ m}$

SASE3: 21 segments

Intersection

Impedance Budged for one Undulator Section

numbers for Q = 1nC, $I_{peak} = 5 \text{ kA}$

energy spread

SASE1 has 35 sections SASE3 with 21 sections

total energy spread (per section) \approx 412 keVelliptical pipe \rightarrow 274 keV (pure surface effects)surface effects \rightarrow 331 keVgeometric effects \rightarrow 81 keV

- shape: large cross-section (mirror currents & pumping) + small gap (undulator)
 → elliptical pipe
- material: frequency dependent conductivity + anomalous skin effect
 - \rightarrow aluminum profile
- more surface effects: roughness + oxide layer
 - \rightarrow very tight tolerances 300 nm + 5 nm in undulators

1000 nm + 5 nm in BC chambers

Geometric Effects

bellows (pipe with gaps)

beam position monitor

optimize geometric effects

About FELs and Wakes

beam properties

energy, energy deviationemittance, opticsbunch charge, peak current

resonance condition

$$\lambda_{l} = \frac{\lambda_{u}}{2(\gamma_{0} + \delta\gamma)^{2}} \left(1 + \frac{K^{2}}{2}\right) + \frac{\lambda_{u}}{2}(\chi'^{2} + \chi'^{2})$$

power gain length (assuming optimal beta function)

$$L_{g} = 1.18 \sqrt{\frac{I_{A}}{I_{\text{peak}}}} \frac{\left(\varepsilon_{n}\lambda_{w}\right)^{5/6}}{\lambda_{l}^{2/3}} \frac{\left(1 + \frac{K^{2}}{2}\right)^{1/3}}{KA_{JJ}} \left(1 + \delta(\sigma_{\gamma}, \cdots)\right)$$

overlap electron – photon beam

$$\sigma_r \approx \sigma_{r,l}$$
 $L_g \approx L_r$

$$\sigma_{r,l} \approx \sqrt{L_r \lambda_l / \pi}$$
 σ_r \Box diffraction $2\sigma_r$

Some Dimensions ≈ European XFEL

	typical beam properties	energy \approx 14 GeV bunch charge \approx 250 p peak current \approx 3 kA	(17.5 GeV) C (1 nC)
	photon wavelength	$\lambda_{l} \mu 10^{-10} \mathrm{m} \ \mu \lambda_{u} / \gamma^{2}$	
	cooperation length	$L_l \ \mu \ 10^{-8} \mathrm{m}$	
	transverse oscillation	$\hat{x} \mu 10^{-6} \mathrm{m}$	(undulator trajectory)
	bunch length	$L_b \ \mu \ 10^{-5} \ m$	
	bunch width	$\sigma_w \mu \sqrt{\lambda_l L_g} \mu 10^{-5} \mathrm{m}$	(overlap electron-beam EM wave)
	undulator (SASE1)	$\lambda_u \approx 4 \times 10^{-2} \mathrm{m}$	
pc Ra	power gain length	$L_g \approx 5 \text{ m}$	(overlap electron-beam EM wave)
	Rayleigh length	$L_R \approx L_g$	
	linear operation	$z < 8L_g$	
	saturation length	$L_s \approx 10 L_g \dots 20 L_g$	

SASE

Amplifier Model (linear operation)

EMwave

 $\mathbf{X} = \left| \begin{array}{c} \text{beam, density modulation} \\ \text{beam, energy modulation} \end{array} \right|$

white noise
$$\begin{pmatrix} 0\\1\\0 \end{pmatrix}$$
 \rightarrow U \rightarrow X_1 \rightarrow U \rightarrow X_2 \cdots \rightarrow U \rightarrow X_n
 $X_2(\omega) = U(\omega)X_1(\omega)$
 $\alpha(\omega)X_e(\omega) = U(\omega)X_e(\omega)$
only one eigenvector is amplified $\rightarrow X_n(\omega) \sim (\alpha(\omega))^n X_e(\omega)$

Amplifier Model (linear operation)

energy loss per stage $\gamma_n = \gamma_0 - n\delta\gamma$ shifted resonance condition $\lambda_l(n) = \frac{\lambda_u}{2\gamma_n^2} \left(1 + \frac{K^2}{2}\right)$ $\alpha_n(\omega) \approx \alpha_0(\omega - n\delta\omega)$

Amplifier Model (linear operation)

our parameters: $\frac{\sigma_{\omega}}{\omega_0} \approx 0.0005$ after 9 power gain length $\frac{\omega'}{\omega_0} 9L_g \approx 0.00045$ for Gaussian bunch with 250 pC, 5 kA wake: $\approx -18 \text{ MeV}/(100 \text{ m})$ ISR: $\approx -5.7 \text{ MeV}/(100 \text{ m})$ with undulator intersections CSR: exponentially increasing but smaller

than wake + ISR

SASE in Non-Linear Regime

for our parameters (SASE1, 0.1nm, 250pC, 5kA):

linear regime:wakes + ISR > CSR (SASE)mild shift of resonance condition

beyond linear regime: CSR > wakes + ISR energy loss → further shift of resonance complicated interaction of kinetic- and field-energy and micro-bunching

Tapered Undulator (Mitigation)

systematic energy loss $\gamma(S)$ can be compensated by tapering K(S)keep resonance condition: $\lambda_l = \frac{\lambda_u}{2(\gamma(S))^2} \left(1 + \frac{K(S)^2}{2}\right)$

optimal tapering is more than compensation of resonance condition, it also considers the dynamics of the bunching process

the optimal taper is non-linear in the range of saturation, it is usually adjusted empirically

Energy Profile before Undulator

the taper compensates wake effects in the undulator, but different parts of the bunch (~ cooperation length \approx 10 nm) radiate on wavelengths defined by the **energy before the undulator** (+ some frequency shift)

the initial energy width causes an additional broadening of the SASE3 spectrum

$$\frac{\Delta \gamma}{\gamma} \approx 0.0026$$

$$\downarrow$$

$$\frac{\Delta \omega}{\omega} \approx 0.0053$$

Gaussian bunch with 250pC, 5kA

A Measurement

operation: 14 GeV, 250 pC, no SASE

change the compression (in BC2) by varying phase and amplitude of L2 \rightarrow variation of wakes due to different bunch length measure energy loss (B2, CL, T4 and T4D) and keep BCM signal

repeat measurement for few phase settings and measure rms bunch length with transverse deflecting structure

comparison with simulated compression (vs rms bunch length)

Summary/Conclusion

European XFEL

impedance data base with about 2000 components
before SASE1: major sources of wakes are cavities, collimators, warm pipes
(L3 to undulator) and fast kickers
SASE1 and 3: optimized geometry (cross section, flanges, pumps, diagnostics, ...)
consider surface effects (material, roughness, oxide layers)

FELs and Wakes

SASE1 wake causes energy variation before SASE3

Measurement

measurements of energy losses (due to variation of bunch length) are in reasonable agreement with simulation based on impedance data base