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Abstract
Work at Cornell has demonstrated good agreement be-

tween a theoretical model by A. Gurevich of the anti-Q-
slope (a field-dependent decrease of the microwave surface
resistance) and experimental results from impurity-doped
niobium. As a corollary, the model predicts that a strong
DC magnetic field applied parallel to the RF surface will
produce a similar decrease in surface resistance. In order
to explore this prediction for many materials, we have de-
signed a new coaxial cavity with a strong, uniform DC field
superimposed over a weak RF field on a removable and re-
placeable niobium sample. Here we present updates on the
progress of this new cavity.

INTRODUCTION
Much of recent fundamental superconducting radio-

frequency accelerator physics (SRF) research has focused on
the so-called “anti-Q-slope”, a field-dependent decrease of
the Bardeen-Cooper-Schriefer (BCS)[1] microwave surface
resistance RBCS that can give rise to an increase in intrinsic
quality factor Q0. This exciting and puzzling phenomenon
has been observed in impurity-doped 1.3 GHz niobium cavi-
ties[2, 3] and lately in clean niobium cavities at frequencies
≥ 2.6 GHz[4, 5]. Nitrogen doping is being employed in the
LCLS-II accelerator project[6] to exploit this anti-Q-slope
on the industrial scale.

One promising theoretical explanation for this phe-
nomenon by A. Gurevich[7] has shown reasonable agree-
ment with experimental results for nitrogen-doped cavi-
ties[8] as well as low-temperature impurity-doped cavi-
ties[9]. In these experimental cases, the anti-Q-slope is
caused by strong RF magnetic fields parallel to the cavity
surface; however, the theory proposes that DC magnetic
fields on the surface would achieve similar results.

In order to investigate this claim, and to continue ex-
ploratory investigations of the anti-Q-slope on a fundamental
level, we have proposed a new cavity which will allow mea-
surements of the SRF surface resistance as a function of
applied DC magnetic field (up to 200 mT) superimposed
over a relatively weak (≤ 10 mT) RF field. The cavity is a
coaxial quarter-wave resonator with a normal-conducting
outer conductor and a superconducting inner conductor; the
former allows the penetration of the external DC field into
the RF cavity, and the latter is a removable sample that can
be given a treatment to be investigated (e.g. nitrogen dop-
ing) and then be placed back in the cavity. The cavity has
three intended resonant modes, at 548 MHz, 1.27 GHz, and
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Figure 1: The full assembly of the coaxial sample host cavity.

Figure 2: The three main RF modes of the cavity; color indi-
cates the magnitude of the magnetic field, which is directed
azimuthally.

2.05 GHz (the 1/4-, 3/4-, and 5/4-wave modes, respectively).
Surface resistance measurements will be made calorimetri-
cally, by determining dissipated power by the temperature
gradient generated along a thermally isolated pathway.

This paper is an update of work previously presented at
SRF 2017[10].

UPDATES
Since the last report on this cavity, we have made numer-

ous updates and improvements on the design of this cavity.
These design choices were largely motivated by the results
of simulations of multipacting, RF coupling, and thermal
effects, as well as issues of practicality of manufacture and
assembly. Figure 1 shows an overview of the cavity design,
and Fig. 2 shows the main RF modes. Figure 3 shows a
closeup of the resonator assembly.

The outer conductor of the cavity shows perhaps the most
striking change since the previous report. Its shape has been
updated to a conical bore with a corrugated section; both
changes have been implemented to mitigate multipacting.
We performed multipacting simulations with the Multipac
code[11]; example results are shown in Fig. 4. The conical
bore effectively pushes emitted electrons down the length
of the cavity, so they do not impact close to their origin.
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Figure 3: Closeup of the RF resonator portion of the cavity. The sapphire rod (in blue) separates the resonating section (at
left) from the thermal pathway section (at right).
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Figure 4: Multipacting simulation results. After updating
the design of the outer conductor, multipacting appears to
be mitigated; the above result does not indicate multipacting
as the electron does not return to its origin.

The corrugation mitigates some multipacting modes which
persisted in the 1/4-wave mode.

Another significant change was setting the forward power
coupler (axially aligned with the cavity) to a fixed length.
This was done to simplify cavity operation and assembly.
The coupler length was optimized to yield the highest sensi-
tivity of calorimetric surface resistance measurements. Fig-
ure 5 shows the results of these sensitivity simulations. We
chose a coupler length of 1.49 cm as it yielded the best over-
all sensitivity, with better than 2% accuracy at almost all
operating parameters (excluded operating conditions were
1.6 K and 2.1 K operation at 548 MHz; under these condi-
tions dissipated power is extremely low). Sensitivity was
calculated using the nominal sensitivity of Cernox sensors,
i.e. ±3 mK, and the temperature-dependent thermal conduc-
tivity of niobium[12].

We also added a transmitted power coupler to help with
field level calculation and with the phase-locked loop sys-

coupler length (cm)
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Figure 5: Sensitivity simulation results. Shown here is sensi-
tivity to relative changes in resistance as a function of main
coupler length for the three modes and at different operating
temperatures, with 50 W power incident on the coupler.

tem. The length was similarly optimized to yield sensitive
measurements of field level while maintaining high Qext.

Further modifications include a wider inner conductor.
Thermal simulations of the previously reported design
showed substantial temperature gradients (≈ 1 K) along the
length of the inner conductor. We increased the width from
0.5 cm to 1.4 cm, which reduced this gradient significantly.
This comes at the cost of lower RF field levels for a given
energy in the cavity, since B scales with 1/r . Nevertheless,
we should expect to achieve peak surface fields up to 10 mT
with negligible thermal gradient along the inner conductor.

We made an additional modification to the sapphire rod,
shown in blue in Figs. 1 and 3, which serves to electrically
isolate the inner conductor from the outer conductor and
thereby prevent propagation of RF waves down the thermal
pathway. The radius and length were reduced in order to
minimize RF volume losses in the dielectric.
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CONCLUSIONS
We have made significant progress in the design of our

coaxial sample host cavity, which will allow for the measure-
ment of the superconducting surface resistance as a function
of the strength of an applied DC magnetic field parallel to
the RF surface. This will provide a unique probe into the
physics of the anti-Q-slope phenomenon, which has until
now largely been limited to TE-mode elliptical RF cavities
with no applied DC field. Design parameters for the cavity
have been finalized, and production will be underway soon.
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