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Abstract
Benchtop calibration of capacitive beam position moni-

tors (BPMs) in low energy beamlines is challenging due to
non-relativistic effects. Typical benchtop calibrations can-
not account for these effects because they rely on speed of
light fields transmitted along a straight wire. However, it is
possible to replicate the electromagnetic fields generated by
non-relativistic beams using a helical line pulse instead of a
straight wire. In order to properly replicate the fields from a
beam, a method must be developed for tailoring input pulses
into the helical line to match bunch shape and a model of
the impedance of the helix should be developed to assist
with matching. This paper uses the sheath helix model to
analyze signal propagation along a helical line in the time
domain, with attention to dispersive effects and impedance
matching. The results from this model are then compared to
Microwave Studio simulations.

INTRODUCTION
Button beam position monitors (BPMs) measure the posi-

tion of the beam center of charge by comparing the signals
generated on buttons on opposite of the beam pipe. The
standard analysis of the signals assumes the electric field
on each button has the same frequency spectrum and the
beam position offset only affects the amplitude on each but-
ton. This is an appropriate assumption for relativistic beams
where the electric field from the beam is flattened into the
plane perpendicular to the beam velocity due to relativistic
effects causing the fields to have the same profile on opposite
sides of the pipe.

However, for non-relativistic beams, the electric field gen-
erated by the beam resembles the field from a charge at rest.
If the beam is offset, the extents of the electric field on op-
posite sides of the pipe differ resulting in opposite buttons
measuring different amplitudes and frequency spectra. The
disparity in the frequency domain causes an error in the
calculated beam position if the standard difference over sum
calculation for the beam position is used [1]. For example,
in the Facility for Rare isotope Beams (FRIB) medium en-
ergy beam transport beamline the beam is traveling with
β = 0.032, non-relativistic effects cause a 50 percent error
in the measured positions [2].

While the effects of non-relativistic beams can be esti-
mated analytically [1] and can be measured using simula-
tions [3], it is desirable to also have method to calibrate
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for these effects on a test stand. The standard method for
calibrating BPMs is performed using straight wire which
propagates a signal at the speed of light. This method cannot
be used to account for non-relativistic effects. To account
for non-relativistic effects, a similar method needs to be de-
veloped but is capable of propagating signals at the beam
velocity.

Helical Pulse Lines
A helical pulse line is one possible method for bench test-

ing non-relativistic BPMs. Helical lines with the correct
geometry are capable of propagating signals with velocities
less than 10 percent the speed of light [4]. Therefore, replac-
ing the straight wire used for BPM calibration with a wire
wound in a helix could allow for a test stand that is capable
of calibrating for non-relativistic effects. However, before
a helical line can be used in a test stand to simulate non-
relativistic beams, its properties must be fully understood;
particularly the impedance and the effects of dispersion.

To guide the development of a helical pulse line, the sheath
helix approximation was used as an analytic model to guide
simulations. The sheath helix approximates a helix by a
thin cylinder that is only conducting along a helical path
on its surface. This simplifies the boundary conditions and
allows the fields to be solved analytically. While this is a
very simple model of a helix, it has been found to have good
agreement with simulations of helices [5].

DISPERSION
A dispersion relation can be found for a helix of radius

a and pitch angle ψ in a pipe of radius R using the sheath
helix model and assuming perfect conductors:

γ2

k2 cot2(ψ)
I1(γR)I0(γa)
I0(γR)I1(γa)

=
I1(γa)K1(γR) − I1(γR)K1(γa)
I0(γa)K0(γR) − I0(γR)K0(γa)

(1)
where In and Kn are the modified Bessel functions of the
fist and second kind respectively, k is the wave number in
free space, h is the propagation constant of the helix, and
γ2 = h2 − k2. Equation 1 only holds for the lowest order
azimuthal mode, however the sheath helix model can also
be used to calculate dispersion for higher modes. But, this
model predicts the next highest mode does not get excited
until f ≈ c/(2πa). For a 5-mm-radius helix, the next higher
mode is excited around 10 GHz, which is higher than needed
to replicate bunches.

From this dispersion relation, the low frequency limit
of the phase velocity is less than the speed of light and
decreases with the pitch angle (Fig. 1). In the limit as ψ goes
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Figure 1: Phase velocities for 5 mm radius helices centered
in a 20 mm radius pipe with different pitch angles, ψ.

to zero, the phase velocity also goes to zero. This limit can
be approximated within a 5% error from the sheath helix
predictions for helices with ψ < 0.1:

βphase ≈

����( a2

R2 − 1
)

cot2(ψ)
2 ln(R/a)

+ 1
����− 1

2

. (2)

This low frequency reduction of the phase velocity allows
helical lines to be created such that a pulse can propagate at
any chosen velocity using the correct pitch angle.

However, as the frequency increases the phase velocity
decreases and approaches the sine of the pitch angle. This
causes large changes in the phase velocity for different fre-
quencies and results in a pulse quickly deforming while
propagating down a helical line. For example, after propa-
gating 200 mm down a 5-mm radius helix with pitch angle of
50 mrad, a 0.6-ns Gaussian pulse will deform into multiple
peaks (Fig. 2).

The deformation of a pulse can be corrected at a chosen
location, by propagating a desired pulse along the helix and
measuring the deformed pulse at the desired location. The
deformed pulse is then reversed in time and propagated along
the helix. At the measurement location the deformation will
be corrected and the original pulse will be reproduced. This
method can be used for helical lines for BPM calibration to
reproduce the desired pulse at the BPM.

Generating the necessary pulse shapes to recreate a Gaus-
sian pulses can be accomplished using a 1D model of a
helical line. At the buttons on a BPM, only the radial elec-
tric field is non-zero and the distortion to this field from
propagating along the helical line can be calculated using
the dispersion relation from the sheath helix model. The
distorted pulse can then be input into CST studio for simu-
lations of helical pulse lines. Overall, using this method to
generate the required input pulse agrees with CST simula-
tions. However, in general the original pulse is not perfectly
reproduced, some minor distortions typically remain, such
as small bumps near the ends of the pulse (Fig. 2). These are
likely caused either from shortcomings of the sheath helix
model or from distortions of the pulse as it encounters the
helix.

Figure 2: Original pulse, distorted pulse from 1D model,
and corrected pulse for 1-ns Gaussian pulse propagating 200
mm along a helical line with R = 20 mm, a = 5 mm, and
ψ = 47.7 mrad.

IMPEDANCE MATCHING
In simulations of helical lines, the input pulse is excited on

a coax line then the inner conductor transitions into a helix
(Fig. 3). At the transition there are large reflections due to
an impedance mismatch between the helix and the coax line.
To improve matching, the impedance of the helical line is
calculated based on the fields from the sheath helix model.
Calculations of the impedance with this method agree with
the results from reflection is CST simulations. For example,
for a 5-mm radius helix with pitch angle of 47 mrad in a
40-mm diameter pipe, the measured impedance from CST
simulations was 1020 Ω and the calculated impedance from
the sheath helix model was 1016Ω in the low frequency limit.
Using the calculated impedance of the helix, an L-pad was
used to match the coax input line to the helix. The impedance
matching resulted in the amplitude of the reflected signal
dropping from 60 percent of the input signal to less than
5 percent.

However, the sheath helix cannot be used to calculate
the impedance for all helices. As the pitch angle of a helix
is increased the helix approaches a straight wire, therefore
the impedance should approach the impedance of a coax
line with inner conductor radius equal to the wire radius.
However, when the pitch angle is increased in the sheath
helix model, which is based on a cylinder with radius equal
to the helix radius, the impedance goes to the impedance of
a coax line with inner conductor radius equal to the radius of
the helix. The sheath helix approximation fails for loosely
wound helices, however, to achieve low phase velocities the
helix must be tightly wound thus the sheath helix calculations
are valid for all cases of interest.

FIELD COMPARISON
The benefits of using a helical line instead of a straight

wire for non-relativistic BPM calibration can be demon-
strated by comparing the electric fields generated by a helical
line and a straight wire to the field from a pencil beam. This
comparison was performed using CST studio to simulate
Gaussian beams traveling at β = 0.085 in a 40-mm diameter
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Figure 3: CST model of helical pulse line with pipe radius
20 mm, helix radius 5 mm, wire radius 0.2 mm, and helix
pitch angle 47.7 mrad.

pipe and was offset 5 mm from the center of the pipe. To
replicate this beam with a helical line, a 5-mm diameter he-
lix was modeled with 0.2-mm radius wire with pitch angle
of 0.0477 radians. The necessary input pulse to correct for
disperion was generated using the 1D model. The straight
wire was 0.2-mm radius and also displaced 5 mm. For each
geometery, the radial electric field on either side of the beam
pipe was measured to observe the effect of the off center
beam. To simplify comparisons, the input pulses for each
geometry was chooses such that a Gaussian pulse with a
standard deviation of 0.51 ns was measured at the pipe wall
closest to the beam or helix. The measured fields on both
sides of the pipe were normalized to the peak field at the
point closer source element.

The measured fields from the straight wire behaved differ-
ently from the pencil beam. Due to relativistic effects, the
pulse shape on either side of the pipe were Gaussian with
the same standard deviation of 0.51 ns. There is also a large
difference in the normalized amplitude of the far side signal:
0.36 for the wire compared to 0.25 for the pencil beam. If a
BPM is calibrated using the straight wire, these differences
will cause an error in the measured position of the beam.

However, the helical line produces fields with similar be-
havior to the pencil beam (Fig. 4 top). The fields on opposite
sides of the pipe from the pencil beam are Gaussian with an
approximately 37% difference in their standard deviations,
0.51 ns on the near side and 0.7 on the far side. This effect
is also seen in the field from the helix, however, the the stan-
dard deviation differs by about 25%: 0.51 ns on the near
side and 0.64 ns on the far side. While the signals from the
helix are still distorted, they show the capability to replicate
the fields from a non-relativistic beam making them more
ideal for BPM calibration.

FUTURE WORK
Current work has shown the ability for helical pulse lines

to reproduce the fields from a non-relativistic Gaussian beam.
However, further work should be done to improve the pulse
shape and determine sources of distortion other than disper-
sion. Another issue that must be address is the helices must
be made from thin wire and therefore will deform unless
they are supported. Any changes in the pitch angle and ra-
dius of the helix will cause local changes to the dispersion
and impedance which will result in unwanted deformation

Figure 4: Radial electric field at pipe wall comparison from
source 5 mm off center. Near side is shown positive, far
side is negative. Top: Helical line compared to pencil beam.
Bottom: Thin wire compared to pencil beam.

of the signal. To support the helix and fix the pitch angle,
the helix can be wound around a dielectric rod that has a
helical groove machined in it. An analytic model of helices
wrapped around a dielectric rod in a pipe is being developed
as well as simulations.
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