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Abstract
AtDiamond Light Source we have developed an Optimiza-

tion Package currently used online to improve the perfor-
mance of the machine, usually measured in terms of lifetime,
injection efficiency or beam disturbance at injection. The
tool is flexible in that control variables in order to optimise
objectives (or their functions) can be easily specified by
means of EPICS process variables (PV), making it suitable
for virtually any sort of optimization. At present three dif-
ferent algorithms can be used to perform optimizations in
a multi-objective fashion: Multi-Objective Genetic Algo-
rithm (MOGA), Particle Swarm Optimizer (MOPSO) and
Simulated Annealing (MOSA). We present a series of tests
aimed at characterizing the algorithms as well as improving
the performance of the machine itself.

INTRODUCTION
The optimisation of an electron storage ring (SR) presents

several difficulties. The non-linear nature of the problem
together with the often large number of parameters involved,
makes predictions very complex. Also, the objectivesmay be
characterized by local minima or dis-continuities, preventing
the use of traditional gradient-based searches. Noise or
drift of the objectives should also be taken into account, in
order to reach good solutions for the machine. Finally, we
often face the case of a set of many objectives in conflict
between each other, where the improvement of one variable
usually degrades another. At Diamond, 1D or 2D parameter
scans are the typical choice with single objective problems,
however such method relies on a starting point close the
optimum. With more complex problems, often involving a
larger number of parameters, the Robust Conjugate Direction
Search technique is often used [1]. It is a powerful method
with very good noise rejection, and capable of dealing with
a large number of input parameters, however it is limited to
a single objective search.

MULTI-OBJECTIVE OPTIMISATION
Multi-objectivity is commonly met in a variety of systems

and problems, where conflicting variables need to be opti-
mised. A classic example in a SR, is the optimization of
lifetime (LT) and injection efficiency (IE), or of injection ef-
ficiency and residual peak to peak horizontal oscillations in
the stored beam (PPX). In these kind of problems factorisa-
tion to a single objective usually entails a loss of information,
∗ marco.apollonio@diamond.ac.uk

or may be difficult to implement due to the heterogeneity of
the objectives. Multi-objective optimisation (MOO) offers a
set of solutions where a final choice can be done according
to priorities, e.g. privileging LT against IE. This apparent
ambiguity is addressed by maintaining a distribution of so-
lutions, sorted into ‘non-dominated fronts’, for which no
member is worse than another in more than one objective
simultaneously. The fronts can be further sorted according
to how diverse the solutions are, as this helps to identify
the true global optimum for each objective. The goal of
the optimisation algorithm is then to move the population
towards an ideal Pareto-optimal front, after which no further
improvement is possible.

MOO has been a standard in the accelerator physics com-
munity for at least a decade now, playing a crucial role in
the off-line refinement of the non-linear dynamics of lattices,
especially during the designing phase of new machines. Yet
its on-line application seems less common, which prompted
us to develop an on-line tool, the DLS-Online Optimiser
(DLS-OO) using modern MOO techniques [2].

Three multi-objective algorithms are now available in the
DLS-OO: a Genetic Algorithm (MOGA) [3], a Simulated
Annealing (MOSA) [4] and a Particle Swarm Optimiser
(MOPSO) [5]. MOGAwas fully implemented in 2016, while
MOSA initially tried as a Matlab version, has now been
made fully compliant with the main Python code. Details
of these two algorithms can be found in [2], while MOPSO,
introduced in 2017, is described in the following sub-section.

Multi-Objective Particle Swarm Optimiser
(MOPSO)

This is a population-based optimisation imitating the be-
haviour of a flock of birds hunting for food. At each iteration,
position and velocity of each i individual in the parameter
space are given by:




~vk+1
i = w~vki + c1r1(~xpbest,k

i − ~xki ) + c2r2(~xgbest,k − ~xki )
~xk+1
i = ~xki + ~v

k+1
i i = 1, ...N ; r1, r2 ∈ [0, 1]

N individuals tend to follow a leader closest to the best
global solution (weighed by the c2 social term), with a ten-
dency w to keep their initial velocity and a position close to
their personal best finding (weighed by a cognitive term c1).
An element of randomness is introduced via r1 and r2. An
external archiver is used to classify and rank the solutions,
in the fashion described before. Details of the method can
be found in [5].
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Figure 1: Front evolution for the (IE, PPX) optimisation with three different algorithms: MOSA (left), MOGA (centre) and
MOPSO (right). The initial setting (blue dot) evolves through intermediate fronts (dashed lines) to the final front (red line).

OPTIMISATION PACKAGE
A thorough description of the optimisation package has

been given in [2]. We highlight here its main features. The
structure of the code, written in Python, consists of:

• a main user interface (UI),
• an optimiser,
• an interaction controller,
• an off-line post-processor.

Input variables and objectives are configured in the main
UI, where the choice of the optimisation algorithm is made.
Input variables can be grouped into families, with absolute
or relative bounds for each parameter. Minimum wait times
for the process variables are also defined at this stage as well
as the number of samples to be measured for each objective.
After this stage, the optimisation script is called, allowing
to define the algorithm-specific parameters and controlling
any visualization relevant to the chosen algorithm. The
interaction controller is responsible for applying the input
variables to the machine via EPICS and for returning each of
the objective functions. It also maps between the algorithm-
specific parameters (e.g. relative change in strength for each
sextupole family) and the machine parameters (i.e. absolute
individual magnet strengths). For each objective, mean and
standard error are returned over the specified number of
measurement samples after elimination of outliers. Non-
dominated fronts are displayed during the optimisation after
each generation. At the end of the optimisation the machine
is returned to its initial state and a second interactive window
is opened, giving the possibility of selecting any given point
of the final front. Results are archived for post-analysis.

MACHINE TESTS
To illustrate the effectiveness of the optimiser, we per-

formed a series of tests, here reported.

Injection Efficiency and Residual Horizontal Os-
cillation in the Stored Beam (IE, PPX)
In this optimisation the objective was to improve the IE

and to reduce the PPX in the stored beam. Four parameters
were used: the two last horizontal steering magnets in the

booster transfer line and the amplitude and timing of a pinger
magnet located in cell 23, used to combat the residual kicks.
The initial pinger settings had been determined in a separate
campaign meant to explore the possibility to use a similar
device to mitigate the after-injection oscillations seen in the
stored beam. For the test we initially spoiled the machine,
creating a setting with a low IE (15 to 20%) and a large post-
injection residual kick (1200 to 1500 µm). The MOPSO,
MOGA and MOSA algorithms, were then put to the test,
whose result is summarized in Fig. 1. Their initial settings
were mainly chosen to equalize the time spent for each test
(about 1 hr). MOGA was set with 20 individuals and 10
generations, MOPSO with 50 individuals and 5 iterations
and MOSA with 5 annealings of 35 iterations each.

While we reserve a more careful optimisation of these con-
stituting parameters for future trials, it is interesting to notice
some typical features of the results. The MOSA case seems
to reach a good optimised set relatively soon (after three
annealings), however the variety of solutions is relatively
poor, both respect to MOGA and to MOPSO. MOGA seems
indeed to reach a better variety of solutions, as expected
from literature. However MOPSO seems to perform even
better, with a more dominating front and a larger variety of
solutions. All three algorithms manage to rescue the system
from an initially bad configuration bringing it basically back
to the typical operating mode (82%, 1280 µm).

Injection Efficiency and Lifetime in the SR (IE, LT)
IE and LT are typically tackled by acting on the harmonic

sextupoles of the SR, trying to increase the dynamic aper-
ture and reduce the Touschek scattering rate. Six sextupole
families were used as parameters for the test, whose evolu-
tion is summarized in the time trace of Fig. 2. Direct LT
measurements need long settling times, making this variable
impractical for an implementation in the DLS-OO. To speed
up the procedure we opted for a proxy variable based on the
beam loss rate monitored by a photo-multiplier tube (PMT)
located after the collimators of cell 1, as routinely done at
Diamond during spin depolarization measurements [6]. The
beam current (Ib) keeps growing during the test, altering
the LT both in a direct way and through the electron bunch
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Figure 2: Objective evolution during the run to optimise IE (green trace) and LTproxy (orange trace). The initial settings
(43%, 1.8) are marked. Two optimisation cycles were performed, interleaved by a beam-dump and recovery of the machine.
At the end the initial LT of about 13 hr at 260mA was recovered, together with the initial IE (83%).

Figure 3: Rate loss as measured with a PMT (blue) and
lifetime (red) versus beam current. A fit to a 4th order poly-
nomial is used in the optimiser to parametrize the loss rate.

length, in turn a function of Ib. Also, the PMT is a local
monitor, whereas Touschek events appear to be distributed
along the SR with a pattern that might change for different
lattice configurations. To tackle these issues we measure
the PMT rates as a function of Ib at the beginning of an
optimisation run (see Fig. 3), defining an LT proxy variable
as:

LTproxy =
PMTmeas

rate (Ib)

PMTcalib
rate (Ib)

·
σcalib
y

σmeas
y

. (1)

For a given machine, Eq. (1) shows that LTproxy should be
equal to one for all currents, with deviations from unity ex-
pected when sextupoles are altered. An increase in Touschek
losses in the SR would then appear as LTproxy > 1. The right-
most fraction compensates for undesired variations in the
vertical size of the beam, being typically one when operating
with an active vertical emittance feedback.

For the test we spoiled the initial configuration with (IE,
LTproxy)=(83%,1.0) corresponding to LT=13.2 hr at 260mA,
by altering the harmonic sextupole strength by 5%. This
produced an initial setting with (IE, LTproxy)=(43%,1.8), or
a LT=6.6 hr. We then performed a MOPSO run with three
generations and 25 individuals, picked up a solution from
its final front as a new initial configuration and ran another
optimisation terminating with the final front shown in Fig. 4.
Also in this case we demonstrated how a spoiled machine

Figure 4: (IE, LTproxy) two-step SR optimisation. The ini-
tially spoiled configuration is marked by the blue dot at (43%,
1.8). The first optimisation produced a non-dominated front
(solid blue line) from which a solution was chosen (red dot)
as a start for a second optimisation producing the final red
front. Intermediate fronts are represented by dashed lines.

can be brought back to its standard performance. So far any
attempt at reaching a better configuration has not produced
the hoped results, possibly showing that our machine is
already operating at its best.

CONCLUSIONS
The DLS-OO has evolved since its inception in 2016. Out-

lier rejection and implementation of results from previous
optimisation are part of the suite. We have shown a first com-
parison of three diverse multi-objective algorithms, for the
optimisation of (IE, PPX) and aMOPSO optimization of (IE,
LT). More detailed comparative studies of the different algo-
rithms are part of the future tests, as well as the introduction
of a virtual machine in the optimisation package.
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