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Abstract
In order to reduce the vertical emittance at the Cornell

Electron Storage Ring (CESR), we first measure and correct
the vertical orbit, dispersion, and coupling. However, due
to the finite resolution of our optics measurements, we still
retain a significant residual emittance. In order to correct
this further, we made use of the theory of sloppy models,
according to which certain high-dimensionality systems can
be modeled with significantly fewer “eigenparameters” that
still contain most of the effect on the desired objective, in
this case, the emittance. However, we noted that using these
knobs for tuning often resulted in increased vertical orbit
errors. In an attempt to constrain these, we have applied
multi-objective genetic algorithms to this problem. We have
found that it can be more efficient to run such algorithms
using our eigenparameters as the genes to be varied, as op-
posed to the raw magnet values. When running with the
first 8 such knobs as genes, we can get either orbits or beam
sizes as good as we obtain with our regular emittance-tuning
algorithm which uses all the corrector magnets.

INTRODUCTION
Our current procedure for minimizing the vertical emit-

tance at CESR is to measure and correct the vertical orbit
and dispersion and the coupling, and has been quite suc-
cessful [1]. However, the ability of this method to further
reduce the emittance is limited by the finite resolution of
our vertical dispersion measurements. We therefore have
been exploring other methods of doing the task, in particular,
a dimension-reduction technique coupled with the RCDS
algorithm [2–5]. This method, however, has only made mod-
est improvements in the vertical emittance. Additionally,
the emittances that our tuning procedures have been able
to achieve are significantly larger than those which our sim-
ulations imply we should be able to reach. This leads us
to suspect that our emittance source is not present in our
models, so we have begun exploring the applicability of ge-
netic algorithms to our problem, since they are less sensitive
to the model used. In particular, since we had seen that
fixing the vertical emittance often introduced vertical orbit
errors when using our emittance-tuning knobs, we wished to
explore multi-objective genetic algorithms which use orbit
information as an objective along with the beam size.

Huang and Tian have explored the applicability of ge-
netic algorithms to particle accelerator optimization, find-
ing that it is possible to obtain noticeable improvements in
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the emittance and dynamic aperture [6, 7]. However, they
had concluded that such algorithms tend to perform more
slowly than other options, and are sensitive to noise. We
have therefore looked for ways to get improved convergence,
and have found that it is often useful to reparameterize our
search space in terms of the eigenparameters we had ob-
tained from our dimension-reduction techniques. Applying
this algorithm to the physical machine has enabled us to
see significant improvements in the emittance when starting
from an uncorrected lattice.

Genetic algorithms work analogously to evolution in or-
ganisms: a population of solutions is evaluated to obtain
some merit function, and the best individuals become parents
for the next generation. These algorithms are particularly
amenable for use in multi-objective optimization because, by
returning a population of individuals in the final state rather
than single solution, running the algorithm once permits one
to obtain a representative sampling of the Pareto front [8].

Our dimension-reduction is based on the theory of sloppy
models, which states that certain systems with a large num-
ber of free parameters may be reparameterized such that
the relative importance of these new ordered eigenparame-
ters drops exponentially [9, 10]. This serves as an efficient
dimension-reduction technique since one may use only the
first few eigenparameters in the optimization and still retain
most of the ability to fix the desired objective. Moreover, the
eigenparameters for our problem are orthogonal in the emit-
tance, so that optimization using one eigenparameter will
not affect the optimal setting of a second eigenparameter.

CESR is a storage ring for electrons and positrons oper-
ating at 5.3 GeV. It has nominal horizontal emittance of 97
nm-rad and vertical emittance of 0.04 pm-rad, although, in
practice, the vertical emittance is roughly 20 pm-rad. It is
equipped with roughly 100 beam position monitors (BPMs),
in addition to a visible-light beam size monitor (VBSM) [11].
All of its magnets are individually powered, and so can be
tuned independently. We had found that our 57 vertical kick-
ers and 24 skew quadrupoles had a significant impact on
the vertical emittance, and so used them as our base tuning
parameters.

ALGORITHM USED
We have used SPEA2 as the selector for our genetic algo-

rithm, the code for which may be obtained in an open-source
format from PISA [12, 13]. SPEA2 ranks the individuals in
a population primarily using a dominance relation, where
one individual dominates another if it is better in at least
one objective and not worse in any of the other objectives.
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Individuals are preferred if they are dominated by no or few
other individuals. In order to promote diversity in the popu-
lation, the algorithm prefers individuals which are in more
sparsely-populated regions of objective space if they have
equal scores in the dominance relation. Importantly, SPEA2
is an elitist algorithm, meaning that any solutions with good
fitness values will be preserved in the population through
multiple generations until they are out-competed. This poses
challenges for applications which use experimental measure-
ments, because an individual which is only considered good
due to to a measurement error could continue to adversely
influence subsequent generations indefinitely. In order to
mitigate this effect, we reduced the measurement error for
each individual by averaging ten measurements of its objec-
tives. Additionally, we remeasured the value of the objective
functions for an individual every seven generations. We used
recombination with simulated binary crossover, symmetric
recombination, and a binary tournament selection process.
Additional parameters are shown in Table 1.

Table 1: Algorithm Parameters

Variable Swap Probability 0
Variable Mutation Probability 0.1
Individual Mutation Probability 1
Individual Recombination Probability 1
Eta Mutation 20
Eta Recombination 15

SIMULATION RESULTS
In order to test our tuning algorithm we made use of the

BMAD lattice simulation software [14]. This provides an
accurate model of the CESR lattice, and also includes the
possibility to input realistic magnet misalignment errors and
corrections according to our usual emittance-tuning pro-
cedures [1]. For all cases shown here, we ran the genetic
algorithm with a population of 30 for 30 generations. Exper-
iments with different population sizes showed convergence
after similar numbers of function evaluations. The initial
population contained the starting lattice without corrections
as one of the individuals, with the values of the correctors of
the other members of the population centered at zero with a
random uniform distribution.

To construct the eigenparameters, we used the BMAD
simulation to obtain the Hessian matrix of the emittance with
respect to all 81 corrector magnets, then took its singular
value decomposition. The eigenparameters are the singular
vectors.

In order to measure the emittance of the beam in the
storage ring, we used the vertical beam size as a proxy, and
so we have taken the same approach in simulation. Although
the beam size will also depend on the local beta function
and the local dispersion and coupling, the magnets which
we are changing do not have a significant effect on the beta
function and reductions in the local coupling and dispersion
are also desirable, since they ought to be zero. The orbit

measurement is provided by taking the sum of the squares of
the vertical displacement as measured by 3 BPMs near the
undulators, since this is where the orbit constraint is most
important.

We first used the 81 raw magnet settings as our genes, and
obtained the results shown in Fig. 1 after 30 generations.
These may be compared with the results of the optimization
obtained when using the first 8 eigenparameters as our genes,
as seen in Fig. 2. We see that the latter method allows us
to converge to a superior Pareto front in the same amount
of time. We attribute this improvement to some mixture of
two factors. First, it is easier in general to search a space
with a smaller number of dimensions. Additionally, since
the eigenparameters are orthogonal in the emittance, there
is a definite sense in which one value of a particular gene is
“better” than another value, regardless of the values of the
other genes, enabling more efficient transmission of genetic
information.

Figure 1: Population in simulation after 30 generations when
using the raw magnets as our genes.

Figure 2: Population in simulation after 30 generations when
using the first 8 eigenparameters as our genes.
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EXPERIMENTAL RESULTS

In order to have the most visible improvement in the beam
size, we started our optimization procedure from an uncor-
rected lattice. As with the simulations, we ran with popu-
lations sizes of 30. However, due to time constraints and
the appearance of some convergence, we only ran for 10
generations. We first used the first 8 eigenparameters as our
genes. The uncorrected lattice was chosen as one individual
in the starting population, with the rest having uniform dis-
tributions in the values of the eigenparameters, centered at
0. The widths of the distributions were correlated with the
expected strengths of the knobs, as obtained from simula-
tions. The population after 10 generations is shown in Fig.
3. For comparison, the standard emittance-tuning procedure
permits us to obtain a beam size of 27 microns and orbit
error of 0.6 mm2. The starting lattice had a beam size of
60 microns and orbit error of 1 mm2. In order to test the
efficacy of our knobs, we also ran the algorithm using the
eight eigenparameters numbered 9-16 as our genes, with the
results shown in Fig. 4.

Figure 3: Population in data after 10 generations when using
the first 8 eigenparameters as our genes.

Figure 4: Population in data after 10 generations when using
the eigenparameters numbered 9-16 as our genes.

It is immediately clear that the first eight knobs are signif-
icantly more useful than the next eight at reducing the beam
size, as would be expected. We also note that, on average,
the latter knobs have fewer orbit errors. This seems sensible,
since the first eight knobs are efficient at reducing beam size
at the expense of the orbit, and so some will do so, while
the next eight do not have as much impact on the beam size,
and so have much less reason to sacrifice orbit. We are un-
sure why the first eight knobs reach lower minimum orbit
errors than the next eight, since no orbit information was
incorporated in the knobs’ creation.

CONCLUSIONS
We have demonstrated that our dimension-reduction tech-

niques enable us to use only eight free parameters to reduce
the vertical emittance at CESR by as much as the standard
correction technique which relies on the use of all the mag-
nets. However, since our knobs rely mainly on vertical steer-
ings, this forces us to also introduce orbit errors. By using a
multi-objective genetic algorithm we are able to map out the
Pareto front showing the trade-off of these two objectives.
By limiting ourselves to 8 carefully-chosen knobs, we obtain
faster convergence than if we had used all available steerings
in our genetic algorithm. This dimension-reduction capabil-
ity also offers the possibility of applying other algorithms
in storage rings which would hitherto have been considered
unsuitable for such high-dimensional problems.
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