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Abstract

Plasma-based accelerators are a promising novel technol-

ogy that could signiĄcantly reduce the size and cost of future

accelerator facilities. However, the typical quality and stabil-

ity of the produced beams is still inferior to the requirements

of Free Electron Lasers (FELs) and other applications. We

present here our recent work in understanding the limita-

tions of this type of accelerators, particularly on the energy

spread and bunch length, and possible mitigating measures

for future applications, like the plasma-based FEL in the

EuPRAXIA design study.

INTRODUCTION

Plasma-based accelerators (PBAs), driven by high-

intensity lasers [1] or charged particle beams [2], can sustain

accelerating Ąelds orders of magnitude higher than conven-

tional radio frequency (RF) accelerators [3] and therefore

ofer a path towards highly compact and cost-efective parti-

cle accelerators. Although the beam quality of these novel

devices is not yet suicient for applications, the potential

reduction in footprint and cost makes this technology very

attractive.

Of particular interest is the use of PBAs as drivers for a

new generation of compact synchrotron light sources, such

as Free Electron Lasers (FELs) [4], which currently rely on

kilometer-long RF accelerators. Concepts for plasma-based

FELs, such as the EuPRAXIA design study [5], are currently

under development. However, FELs impose strict require-

ments over certain key beam parameters, such as a micron-

level emittance, multi-kiloampere current, femtosecond-

long bunches and a relative energy spread . 10−3 [6]. Also

of interest is the production of sub-femtosecond bunches to

generate short x-ray pulses for ultrafast science [7].

Outstanding progress in PBAs over the past decades has

led to the experimental demonstration of micron to sub-

micron emittances [8Ű16], peak currents over tens of kilo-

amperes [17, 18] and bunches as short as a few femtoseconds

[17Ű20]. Still, the achievement of energy spreads below the

percent level has remained an issue. Prior to 2004, where

three diferent groups demonstrated almost simultaneously

the production of quasimonoenergetic beams with ∼ 100

MeV energies [21Ű23], electrons accelerated in PBAs exhib-

ited broad and continuous energy spectra [24Ű28]. Since

then, the rapid advances in laser technology as well as the

development of new techniques for controlled injection have
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led to the successful realization of multi-GeV beams with

energy spreads as low as ∼ 1%. These techniques typically

rely on self-injection from wave breaking [29, 30], which

can be enhanced by modulating the plasma density proĄle

[31, 32]. Other methods include ionization injection [33Ű38]

or the use of colliding laser pulses [39Ű41]. Experimental

results from these diferent injection schemes can be seen in

Fig. 1.
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Figure 1: Overview of experimental results from laser-driven

PBAs using diferent injection techniques, as obtained from

Refs. [3, 17, 18, 20Ű23, 32, 42Ű56]. An illustrative range of

parameters obtained in experiments prior to 2004 as well as

for FEL applications is shown, including reference values

of current FEL facilities [57Ű62].

We discuss here some general sources of energy spread

in PBAs that currently limit the performance of these de-

vices, as well as the diiculties in achieving sub-femtosecond

bunches. Other issues such as the repetition rate or shot-to-

shot Ćuctuations are not covered.

PARTICLE DYNAMICS IN PBAs

The perturbation caused by the driver in the plasma elec-

tron density generates a wakeĄeld in which electrons can

be trapped and accelerated. The motion of a relativis-

tic electron within this wake is described by Ûp = −eW ,

where p = mγv is the particle momentum, m the elec-

tron mass, γ = 1/
√

1 − |v |2/c2 the relativistic Lorentz fac-

tor, v the particle velocity, e the electron charge and W =
(

Ex − cBy, Ey + cBx, Ez

)

the wakeĄeld, in which Ei and Bi ,

for i = x, y, z, are the diferent components of the electric

and magnetic Ąelds and c is the speed of light. Depending on

the intensity of the driver diferent accelerating regimes can
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be identiĄed. In particular, analytical 3D expressions exist

for the linear regime [63, 64], in which the laser strength

parameter a0 ≃ 0.85 × 10−9
√

λ2(µm)I0(W/cm2) ≪ 1, with

λ and I0 being the laser wavelength and peak intensity, or the

ratio between beam and plasma electron density nb/np ≪ 1

when a particle driver is used. Several models have also

been developed for the blowout regime [65Ű67], in which

the driver is able to completely expel all plasma electrons,

leaving behind an ion cavity with uniform focusing gradi-

ent K = ∂xWx = ∂yWy = mω2
p/2e and accelerating Ąelds

with approximately constant slope E ′
z = ∂zWz towards the

back of the wake, where ωp = (npe2/mǫ0)
1/2 is the plasma

frequency and ǫ0 the vacuum permittivity. In what follows,

the blowout regime is assumed, as it ofers ideal focusing

properties and most experiments operate on it.

The linear focusing forces in this regime allow the trans-

verse motion of the particles to be described as:

Üx +
E

γ
Ûx +

K

γ
x = 0, (1)

where E = Ûγ = −eEz/mc is the rate of energy gain and K =

eK/m. This implies that particles will perform transverse

oscillations, known as betatron motion, with a frequency

ωβ =
√

K/γ while propagating throughout the accelerator.

If the betatron frequency is a slowly varying function [65],

i.e. Ûωβ/ω
2
β
= E/2

√

γK ≪ 1, these transverse oscillations

can be analytically found to be

x(t) ≃ A0Γ(t)
−1/4 cos (φ(t) + φ0), (2)

where Γ = γ/γ0 = 1 + Et/γ0 and A0 =

√

x2
0
+

(

vx,0/ωβ,0
)2

is the initial oscillation amplitude, with γ0 being the initial

particle energy while x0, vx,0 and ωβ,0 are the initial trans-

verse position, velocity and betatron frequency. The initial

phase is given by φ0 = − arctan
(

vx,0/x0ωβ,0
)

and the phase

advance φ =
∫ t

0
ωβ(t

′) dt ′ is

φ(t) ≃ 2

√

Kγ0

E

(

Γ(t)1/2 − 1
)

. (3)

The longitudinal particle position is assumed to be Ąxed

in the speed of light frame ξ = z − ct, and therefore the

experienced E is constant.

In order to discuss the beam energy spread it is useful

to introduce the normalized RMS longitudinal emittance,

deĄned as ǫL =
√

〈ξ2〉〈γ2〉 − 〈ξγ〉2, where 〈〉 denotes the

second central moment of the distribution. From here one

can identify the bunch length asσξ =
√

〈ξ2〉 and the absolute

energy spread as σγ =
√

〈γ2〉.

SOURCES OF ENERGY SPREAD AND

BUNCH LENGTH

The main source of energy spread in PBAs is typically

the steep slope of the accelerating Ąelds within the focus-

ing region of the wake, E ′
= −eE ′

z/mc, which induces a

longitudinal energy correlation along the bunch [68]. As-

suming a constant E ′, the slope (or chirp) of this correlation

for a beam with an initially uncorrelated energy distribution

(〈ξγ〉0 = 0) can be expressed as δ(t) = E ′γ̄0(Γ̄(t) − 1)/E,

where Γ̄ = γ̄/γ̄0 with γ̄ and γ̄0 being the current and initial

mean beam energy. From this expression it follows directly

that the induced correlated energy spread is given by

σc
γ (t) = δ(t)σξ =

E ′γ̄0σξ

E

(

Γ̄(t) − 1
)

. (4)

Assuming that the bunch length is preserved during ac-

celeration, this correlated energy spread can be shown

not to have any impact on the longitudinal emittance. In

terms of δ, the correlation term in ǫL can be expressed as

〈ξγ〉 = δσ2
ξ
= σc

γσξ , and since the total energy spread is

given by σγ = [(σ0
γ )

2
+ (σc

γ )
2]1/2, where σ0

γ is its initial

value, the longitudinal emittance at any time can be found

to be constant, ǫL = σ
0
γσz = ǫ

0
L
. This means that the in-

crease in energy spread due to σc
γ can be compensated, as

proposed in [69, 70], and thus it does not fundamentally

limit the achievable energy spread.

The correlated energy spread can also be minimized

through beamloading [71, 72], in which the presence of

the electron beam itself can modify the longitudinal Ąeld

such that E ′ is minimized or suppressed along the bunch.

However, achieving E ′
= 0 imposes strict conditions on

the bunch current proĄle which are diicult to realize in

a controlled manner with internal injection schemes. This

could be improved with externally injected beams produced

in a conventional RF accelerator, as this more mature tech-

nology allows for a more precise bunch shaping that can

be optimized for beamloading in a plasma stage. However,

due to the short wavelength of the wakeĄelds (∼ 100 fs),

sub-femtosecond precision in the injection phase of the exter-

nal beam is necessary in order to achieve suicient shot-to-

short energy stability. Although this level of synchronization

between laser driver and witness beam is beyond state-of-

the-art, new concepts have been proposed for its realization

[73].

Another source of energy spread in PBAs is the emission

of synchrotron radiation, usually referred to as betatron radi-

ation, arising from the transverse electron oscillations [74,

75]. Since not all beam particles oscillate with the same

amplitude, they will radiate energy at diferent rates and

therefore induce an energy spread which has been estimated

as [76]

σr
γ (t) =

2re

15c3

K2σA2 γ̄3
0

E

(

Γ̄(t)5/2 − 1
)

(5)

where re = e2/4πǫ0mc2 is the classical electron radius,

σA2 is the standard deviation of A2
0

within the bunch and

E is assumed constant. For a Gaussian beam matched to

the plasma focusing Ąelds [77, 78], σA2 can simply be

written in terms of the normalized transverse emittance

ǫx =
√

〈x2〉〈p2
x〉 − 〈xpx〉2/mc as σA2 ≃

√

8c2ǫ2x/K γ̄0.
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This source of energy spread, as opposed to σc
γ , is not

caused by a longitudinal correlation and therefore con-

tributes to an increase of the longitudinal emittance, thus

posing a more fundamental limit to the achievable energy

spread. Furthermore, it has been proposed that the emis-

sion of betatron radiation could limit the maximum energy

achievable in a PBA [79] since the radiated power increases

with the beam energy. This could be relevant for collider

applications where TeV energies are required. One way

of mitigating this issue would be to decrease the focusing

strength of the transverse Ąelds, for which the use of hollow

plasma channels [80] is particularly attractive.
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γ
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γ
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γ
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Figure 2: Comparison of the diferent sources of energy

spread reviewed here for the beam and plasma parameters

described in the text.

An additional contribution to the energy spread arises

during electron injection, which determines σ0
γ . For beams

provided externally, this is simply the energy spread of the

incoming beam. However, if the electron bunch is generated

internally, the initial location and momentum of the trapped

electrons, as well as the total duration of the injection process

can greatly contribute to the energy spread [81]. This is also

the process that limits the initial bunch length, which is typi-

cally on the femtosecond range. Several schemes have been

proposed in order to reach sub-femtosecond duration by us-

ing sharp density transitions [82Ű84], although experiments

have yet to demonstrate these ultrashort bunches.

Besides these diferent efects, we have recently investi-

gated an additional source of energy spread and bunch length

that could further limit the performance of PBAs. This con-

tribution to the energy spread arises from the coupling of

longitudinal transverse electron dynamics [85] and will be

reviewed in detail in an upcoming publication [86].

The relevance of the diferent sources of energy spread

reviewed here is compared in Fig. 2 using Eqs. (4) and (5)

for the case of a beam with ǫx = 1 µm rad, σξ/c = 1 fs, a

matched transverse size and an initial energy of 100 MeV

with a spread of 1%, parameters which could be achieved in

the SINBAD facility at DESY [87Ű89]. A plasma stage

with np = 1017 cm−3 assuming a typical blowout with

E ′
= ω2

p/2c and E = ωp is considered, providing a net

energy gain of 1 GeV. It can be seen how the correlated

energy spread quickly dominates and tends asymptotically

to σc
γ (t)/γ̄ ∼ E ′γ̄0σξ/E. The contribution of betatron radi-

ation, although negligible in comparison to σc
γ , sets a lower

limit for the achievable energy spread which could become

relevant for FEL applications (σr
γ /γ̄ ∼ 10−5) at ∼ 10 GeV

energies.
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