
SLICE ENERGY SPREAD OPTIMIZATION FOR A 5 GeV
LASER-PLASMA ACCELERATOR

X. Li∗, P. A. P. Nghiem, A. Mosnier, CEA/IRFU, Gif-sur-Yvette, France

Abstract
GeV-scale laser-plasma accelerating modules can be inte-

grated into a multi-staged plasma linac for driving compact

X-ray light sources or future colliders. Such a plasma mod-

ule, operating in the quasi-linear regime, has been designed

for the 5 GeV laser plasma acceleration stage (LPAS) of

the EuPRAXIA project. Although it can be employed to

optimize the total energy spread, the beam loading effect in-

troduces an non-negligible slice energy spread to the beam.

In this paper, we study the slice energy spread from lin-

ear theory, establishing a relationship between it and the

laser-plasma parameters. To reduce the slice energy spread,

simulations have been carried out for various plasma densi-

ties and laser strengths. The results will be discussed and

compared with the theory.

INTRODUCTION
Plasma-based accelerators [1, 2] have been considered

as promising candidates to drive compact X-ray light

sources [3] or future lepton colliders [4] because of their

ability to provide extremely high accelerating fields. Being

free of the breakdown as in conventional RF structures, an

ionized plasma could sustain a plasma wave with electric

fields in excess of the cold nonrelativistic wave breaking

field, E0 = mecωp/e or E0(V/m) � 96
√

np(cm−3), where
ωp is the plasma wave frequency, me and e are electron
rest mass and charge, respectively, c is the speed of light in
vacuum and np is the plasma density. Due to the difficulty
of laser guiding and the depletion of laser power in a long

plasma, a plasma module could just accelerate the electrons

to multi-GeV scale. To achieve a final beam energy of a few

hundreds of GeV or even TeV, it is necessary to construct a

multi-staged plasma linac. For successful staging, the beam

quality out of one module is important.

In this paper, we investigate the plasma module from the

aspect of the slice energy spread in the context of the Eu-

PRAXIA project, where a 30 pC electron beam of∼150MeV
(externally injected from a plasma or RF injector) is ac-

celerated to 5 GeV in a laser-plasma acceleration stage

(LPAS) [5, 6]. To allow better stability, the plasma wave

is operated in the linear or quasi-linear regime, which re-

quires a laser strength of a0 ≥ 1. While it is used tominimize

the total energy spread, the beam loading effect also causes

a non-negligible slice energy spread due to its strong radial

dependence across the beam. Here we report the theoreti-

cal analysis of the slice energy spread, starting from linear

theory, to establish a relationship between the slice energy

spread and the laser-plasma parameters. Based on it, 3D sim-
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ulations by the Warp [7] codes have carried out for various

laser-plasma parameters and the results will be discussed

and compared with the theory.

THEORIES
The Beam Loading Effect
In LPAS, the witness beam can excite a co-moving plasma

wave when it moves through the plasma. The process that

the wave produced by the accelerated beam modifies the

fields in the plasma is referred to as beam loading. In the

linear or quasi-linear regime, the beam loading effect can be

calculated using perturbation theory. For an arbitrary rela-

tivistic electron density of the form nb(ξ, r) = n | | (ξ)n⊥(r),
where ξ = z− ct, the longitudinal component can be written
into [8]

Eb
z (ξ, r) =

e
ε0

∫ ξ

−∞
n | | (ξ ′) cos[kp(ξ − ξ ′)]dξ ′ · R(r), (1)

R(r) = k2p

∫ ∞

0

r ′dr ′n⊥(r ′)K0(kp |	r − 	r ′ |). (2)

where kp = ωp/c is the plasmawavenumber, ε0 is the electric
constant, K0 is the zeroth-order modified Bessel function.

Since it’s very difficult to get an analytical expression for Eb
z ,

we try to find an approximate one for a bi-gaussian bunch

profile, that is, nb(ξ, r) = nb exp
(−ξ2/2σ2z ) exp (−r2/2σ2r

)
,

with enb = Qb/(2π)1.5σzσ2r , σr the rms beam size and σz
the rms bunch length, Qb the bunch charge. For this specific

profile, the on-axis longitudinal field, to the first order, is

Eb
z (ξ) � Eb

z (0) + E ′
z(0)ξ = Eb

z (0)
[
1 +

E ′
z(0)

Eb
z (0)
ξ
]
, (3)

with

Eb
z (0) =

Qb

4πε0
k2pe−

k2pσ
2
z

2
[
0.058 − ln(kpσr )

]
∝ Qbnp

[
0.058 − ln(kpσr )

]
(4)

E ′
z(0)/Eb

z (0) =
√
2

π
σ−1
z

(
1 −

k2pσ
2
z

2

)
, (5)

where Eb
z (0) and E ′

z(0) are the electric field and its derivative
at ξ = 0, r = 0, respectively. The limits kpσr � 1 and

kpσz � 1 have been used to derive the equations.

In Fig. 1(a), the on-axis longitudinal field estimated by

Eq. (4) was compared with that calculated by Eq. (1). They

agreed very well between −σz < ξ < σz , in which most of
the electrons reside. The longitudinal field was also plotted

as a function of transverse coordinate for various beam size

in Fig. 1(b), showing a strong transverse dependence.
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Figure 1: (a) Longitudinal and (b) radial distributions of Eb
z .

The Slice Energy Spread
Assume that the accelerating field experienced by one

particle is the sum of the laser-driven wakefield and the

beam-driven wakefield or beam loading effect, that is

Eacc(ξ, r, z) = ELW
z

(
r, z + ξ

)
+ Eb

z (ξ, r, z), (6)

where z is the longitudinal coordinate of the reference parti-
cle in the laboratory frame, ξ is the longitudinal coordinate
within the bunch. The laser-driven wakefield has the form of

ELW
z (r) ∼ exp(−2r2/w2

0
) and is r-independent near the axis

when the laser spot size is much larger than the beam size [2].

However, the beam loading effect, which can be written as

Eb
z (ξ, r, z) = Eb

z (ξ, z)R̂(r), with R̂(r) = R(r)/R(0), has a
significant radial dependence.
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Figure 2: (a) Illustration of particle’s motion in 2D normal-

ized trace space and (b) dependence of slice energy spread

on the normalized beam size in 2D and 4D trace space.

The radial coordinate of one particle is difined by the

betatron motion and therefore is a function of time,

r2 = A2x cos
2 φx + A2y cos

2 φy, (7)

where Ax and Ay are oscillation amplitudes, which follows

the same distribution as n⊥, φx and φy are time-dependent
phases in x − x ′ and y − y′ phase spaces, respectively. Since
they have the same betatron frequency, it takes the same

time for all the particles to undergo one turn of betatron

oscillation. And it is reasonable to compare their energy gain

only after they have all gone through one or multiple turns of

oscillation. To illustrate this, consider the motion of particles

in the normalized trace space (x/√β, √βx ′), with β the
betatron amplitude. In LPAS, the oscillation is much faster

than the change of the force and the beam energy because

of the strong focusing force. Therefore, we could assume

a constant betatron amplitude during one turn. As shown

in Fig. 2(a), the energy gains of P1 and P2 will be different
after one turn, because they have different trajectories in the

trace space, which means different transverse coordinates.

On the contrary, P1 and P3 will gain the same energy after
one turn, because they have the same trajectories in the trace

space, which means the same transverse coordinates.

To estimate the slice energy spread, wemade the following

assumptions. First, we neglect the change in the beam energy

during one betatron oscillation period as mentioned above.

Secondly, we assume that the beam size doesn’t change sig-

nificantly during the acceleration, which almost holds when

the beam energy goes very high. Thirdly, we also assume

that the plasma density the beam sees is the same despite the

dephasing effect. With the last two assumptions, the beam

loading effect is unchanged throughout the acceleration, or

Eb
z (ξ, z) = Eb

z (ξ).
For a slice located at ξ, the energy gain deviation between

an off-axis particle and an on-axis particle is eEb
z (ξ)

[
1 −

R̂(r)]dz. The radial dependence term 1 − R̂(r) is a function
of the oscillation amplitudes and phases through Eq. (7), and

is averaged for one period of betatron motion (e.g., −π <
θx < π). Using a Monte-Carlo method, we obtained the root
mean square of this term, which turned out to be a function

of the normalized beam size kpσr , as shown in Fig. 2(b).
The rms slice energy spread then is

σEs =

∫ Lacc

0

eEb
z (ξ)dz · σ1−R̂ = eEb

z (ξ)Lacc · σ1−R̂, (8)

where Lacc is the accelerating length. And, the relative slice
energy spread is

σEs/E =
eEb

z (ξ)Lacc · f⊥
Wb

� Eb
z (ξ)

〈Eacc〉 · σ1−R̂, (9)

where Wb is the final beam energy and 〈Eacc〉 � ΔWb/Lacc
is the average accelerating field.

SIMULATIONS AND DISCUSSIONS
The main parameters used in the simulations are listed

in Table 1. To minimize the slice energy spread, we have

carried out simulations with different laser and plasma pa-

rameters. For each set of parameters, the plasma channel, the

beam size and the bunch length have been optimized first [6]:

a good channel depth is chosen so that the laser propagates

without neither significant over-focusing nor de-focusing;

the beam size is matched to the transverse focusing force at

the entrance and the bunch length is scanned to minimize

the total energy spread.

According to Eq. (9), the slice energy spread could be

reduced in several ways, such as tuning the plasma density.

In so doing, both Eb
z and 〈Eacc〉 will change, but in a dif-

ferent way. That’s because the accelerating field does not

only depend on the plasma density but also on the dephaing

effect. In our simulations, three plasma densities were com-

pared while keeping the laser strength of a0 =
√
2. The slice

energy spread at the bunch center was shown as a function
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Table 1: Simulation Parameters for the LPAS

variable value unit

Laser
strength a0 1 − 2
spot size kpw0 ∼ 3

duration kpσL
√
2

Plasma
density np 1 − 2 1017 cm−3

acc. length Lacc ∼ 30 cm

channel depth Δn/Δnc < 1
Electron
charge Q 30 pC

energy Ek 150 MeV

energy spread ΔE/E 0.5 %

beam size σx ∼1 μ m
emittance εn,x 1.0 π mmmrad
bunch length σz 1 − 3 μm

of the plasma density in Fig. 3(a). For the theoretical esti-

mation from Eq. (9), the plasma density and beam size at

5 GeV were considered. The deviation, especially at lower

plasma density, was probably due to the fact that the linear

theory doesn’t work well when the beam density is much

higher than the plasma density [9]. For the plasma density

of 1.0× 1017 cm−3, simulation was also carried out with a
higher laser strength (a0 = 2). The increased accelerating
field helped reduce the slice energy spread further to be

below 0.1%, as required by the X-ray FEL [5].
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Figure 3: (a) Slice energy spread at the bunch center (ξ = 0)
as a function of the plasma density and laser strength; (b)

slice energy spread distributions for a0 =
√
2 and np =

0.5, 1.0, 1.5 × 1017cm−3 (I to III) and for a0 = 2 and np =
1.0 × 1017cm−3 (IV).

The slice energy spread distributions are shown in

Fig. 3(b). It’s worth noting that for all the cases, the slice

energy spread peaked near the bunch center, while according

to Fig. 1(a) and Eq. (9), it would be higher near the bunch

tail, where Eb
z is larger. This can be explained by Fig. 4,

where a uniform transverse distribution around the axis was

observed near the bunch tail. Due to the much higher beam

density, plasma electrons are expelled by the space charge

field from the bunch head, leaving a bubble-like channel for

the bunch tail and therefore a transversely uniform wakefield,

as in the nonlinear regime [10].
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Figure 4: Distribution of Eb
z on the x − z plane: z > 0 for

the bunch head.

CONCLUSION
In this paper, the slice energy spread due to the radial de-

pendence of the beam loading effect was analytically studied,

based on the linear theory of plasma wakefield, the betatron

motion and a few assumptions. In order to meet the require-

ment of EuPRAXIA project, the slice energy spread was

optimized first by tuning the plasma density and then by

increasing the laser strength. The results from 3D simula-

tion were compared with our theory and agreed well with

each other and a final slice energy spread less than 0.1% was

obtained. The slice energy spread peaked near the bunch

center, implying a transition from linear regime to nonlinear

regime near the bunch tail when the beam density is much

higher than the plasma density.
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