
ACCURATE MODELING OF THE HOSE INSTABILITY IN PLASMA
BASED ACCELERATORS∗

T.J. Mehrling†, C. Benedetti, C.B. Schroeder, E. Esarey and W.P. Leemans
Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

Abstract
The hose instability is a long standing challenge for

plasma-based accelerators. It is seeded by initial transverse

asymmetries of the beam or plasma phase space distribu-

tions. The beam centroid displacement is thereby amplified

during the propagation in the plasma, which can lead to

an unstable acceleration process. A witness beam can it-

self cause hosing and/or may be affected by the hosing of

the drive beam. The accurate study of hosing including a

witness beam is of utmost importance to facilitate stable

plasma-based accelerators. In this contribution, we discuss

novel methods for the mitigation of hosing and present a

new model for the evolution of the plasma centroid, which

enables the accurate investigation of the hose instability of

drive and witness beam pair in the nonlinear blowout regime.

This work enables more precise and comprehensive studies

of hosing and hence, for the potential stabilization of future

compact plasma-based accelerators.

INTRODUCTION
Plasma wakefield accelerators (PWFAs) [1,2] can sustain

accelerating fields beyond 10 GV/m and are therefore con-

sidered a promising technology candidate for future compact

and affordable particle accelerators. While the extreme lon-

gitudinal fields allow for an energy gain of several GeVs over

distances of only tens of centimeters [3, 4], the comparable

magnitude of the transverse fields in the nonlinear blowout

regime [5] implies a rapid growth rate for the hose instabil-

ity [6]. Applications driven by particle accelerators require a

high degree of stability and hence, the hose instability poses

a critical challenge for the applicability of PWFAs.

The current mathematical description of the hose insta-

bility in PWFAs is given by the coupled differential equa-

tions [7, 8]

∂2Xb

∂t2
+ λ(ξ, t)

∂Xb

∂t
+Ω2(ξ, t)Xb = Ω

2(ξ, t)Xp , (1)

∂2Xp

∂ξ2
+

cψ(ξ)cr (ξ)
2

Xp =
cψ(ξ)cr (ξ)

2
Xb , (2)

where ξ = t − z is the co-moving variable, z the propa-
gation distance, and t the time. Length-scales within this
work are normalized by the plasma wavenumber kp = ωp/c
and timescales by the plasma frequency ωp =

√
4πn0e2/m,

∗ This work was supported by the Director, Office of Science, Office of

High Energy Physics, of the U.S. Department of Energy under Contract

No. DE-AC02-05CH11231 and used the computational facilities at the

National Energy Research Scientific Computing Center (NERSC).
† tjmehrling@lbl.gov

where c is the speed of light. Furthermore, densities are nor-
malized to the ambient plasma electron density n0, charges 
to the elementary charge e, masses to the electron mass m 
and potentials to mc2/e.
The coefficients λ(ξ, t) and Ω(ξ, t) in Eq. (1) were intro-

duced in Ref. [8]. A finite λ(ξ, t) accounts for the damp-
ing/amplification of the beam centroid oscillations owing 
to a relativistic mass gain/loss of beam electrons and for 
the damping of the centroid oscillations from a finite uncor-
related beam energy spread. The coefficient Ω(ξ, t) incor-
porates the effect of the change of the betatron frequency 
for a changing energy. These effects intrinsically lead to 
a saturation or damping of the hosing for the drive beam 
in PWFAs [8], similarly to the mitigation of hosing in self-
modulated PWFAs owing to a varying betatron wavenumber 
along the beam [9] and similarly to Balakin-Novokhatsky-
Smirnov damping in conventional accelerators [10].
The coefficients cr (ξ) and cψ(ξ) in Eq. (2), introduced in 

Ref. [7], account for the ξ-dependent blowout radius and cur-
rent and for relativistic velocities of electrons in the sheath. 
These coefficients were derived through investigation of the 
dynamics of a plasma electron at the blowout-sheath bound-
ary, so as to infer the perturbation of the channel centroid.
While the model in Ref. [7] posed a dramatic improve-

ment for the modeling of hosing in PWFAs in the nonlinear 
blowout regime, compared to the original model (cr cψ = 1)
[6], it still is insufficiently accurate and features unphysical 
properties. Here, we outline a generalization of Eq. (2), in-
troduced recently by investigation of the collective dynamics 
of all sheath electrons subject to beam and plasma centroid 
deviations [11]. As shown, this model is more accurate and 
physical, and therefore can provide an important basis for 
crucial studies on the hosing of drive and witness beam pairs 
in PWFAs in the blowout regime.

DERIVATION OF THE PLASMA
CENTROID EQUATION

Quasi-static Moment Equation
In Ref. [11], a general equation for the evolution of the 

moments of the plasma-electron phase space density fp 
along ξ is derived, when the electrons are subject to the fields 
of a beam with a finite centroid displacement and to the fields 
of a blowout wake with a finite transverse displacement. This 
derivation is outlined in the following.
The use of the quasi-static approximation [12–14] ∂t fp � 
∂ξ fp for the plasma-electron phase space density implies 
that in the azimuthally symmetric case the density function 
can be only a function of the radial position r, radial mo-
mentum pr , and ψ [resulting from the constant of motion
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ψ + pz − γ = −1 (see Ref. [15])], for a given time t and a
co-moving position ξ, such that fp,0 = fp,0(r, pr, ψ; ξ, t).
From the conservation of the phase space density

dfp,0/dt = 0, we obtain the Vlasov equation for fp,0 in
the quasi-static approximation,

∂ξ fp,0 = −
γ

1 + ψ

(
pr
γ
∂r + Fr∂pr + Fψ∂ψ

)
fp,0 , (3)

with the forces Fr = dpr/dt and Fψ = dψ/dt, and where
the Lorentz factor is expressed as γ = [1 + p2r + (1 +

ψ)2]/(2 + 2ψ). The asymmetric plasma electron phase

space distribution fp can be expressed as an expansion

of fp,0(r∗, p∗r, ψ; ξ, t) for small perturbations 〈x〉 and 〈px〉,

where r∗ =
√
(x − 〈x〉)2 + y2 and p∗r = (px − 〈px〉) cos θ +

py sin θ, such that

fp � − cos θ(〈x〉 ∂r + 〈px〉 ∂pr ) fp,0 , (4)

and fp = fp(r, θ, pr, ψ; ξ, t). The Vlasov equation for the
asymmetric plasma electron distribution is given by

∂ξ fp = −
γ

1 + ψ

(
pr
γ
∂r + �θ∂θ + Fr∂pr + Fψ∂ψ

)
fp . (5)

Multiplication of Eq. (5) by quantities Φ and integration

by parts with the assumption that the phase space density

decays to zero at the integration limits, yields the quasi-static

moment equation

∂ξ 〈Φ〉 =

〈
pr

1 + ψ
∂rΦ

〉
+

〈
γ �θ

1 + ψ
∂θΦ

〉

+

〈
γFr

1 + ψ
∂prΦ

〉
+

〈
γFψ
1 + ψ

∂ψΦ

〉
.

(6)

This equation expresses how an averaged property 〈Φ〉 of the

plasma electron phase space distribution at a given time and

comoving position changes along the comoving coordinate.

Plasma centroid equation
Application of Eq. (6) to the transverse spatial average

(Φ = x) and transverse momentum average (Φ = px =

pr cos θ), after some simplifications and algebra, yields

∂2ξ 〈x〉 =

〈
γ

1+ψFr cos θ
〉

〈1 + ψ〉
−

〈pr cos θ〉

〈1 + ψ〉2

〈
γFψ
1 + ψ

〉

=

〈
γ

1+ψFr cos θ
〉

〈1 + ψ〉
−
∂ξ 〈x〉
〈1 + ψ〉

〈
γFψ
1 + ψ

〉
.

(7)

The forces are now cylindrically expanded w.r.t. the plasma

electron centroid Xp = 〈x〉 and w.r.t. the beam centroid Xb

and expressed in terms of electromagnetic potentials. After

application of a cold fluid approximation to fp,0 one obtains
the second-order differential plasma centroid equation

∂2Xp

∂ξ2
+ Cd(ξ)

∂Xp

∂ξ
+

Cp(ξ)

2
Xp =

Cb(ξ)

2
Xb . (8)

This equation is equivalent to a driven, damped harmonic os-
cillator for the plasma centroid Xp(ξ, t) along ξ. The second 
term thereby acts as a damping/amplifying term for Cd � 0 
and the coefficient Cp/2 is the square of the undamped os-
cillation wavenumber of the system. The oscillator is driven 
by the beam centroid Xb for a finite Cb .

Ceofficients for the Blowout Regime
The coefficients Cd , Cp , and Cb can be explicitly derived 

by the use of a mathematical description for the potentials 
and currents within the blowout and within the sheath, e.g., 
by use of the blowout model in Ref. [16]. In addition, we 
consider a beam which is sufficiently narrow, such that the 
beam current density does not significantly overlap with the 
plasma electron sheath. These assumptions allow for the 
formulation of Cd , Cp , and Cb in terms of the instantaneous 
beam current Ib(ξ), the local blowout radius R(ξ) and the 
blowout curvature R′(ξ) = ∂ξ R(ξ) to first order accuracy of 
an expansion w.r.t. Δρ/R � 1, where Δρ is the characteristic 
sheath thickness.
The term responsible for the restoring effect is

Cp =
1 − R′2

4
−
Δρ

4

[
1 + Λ

R
+

R
(
R′2 − R2 − 1

)
4

−
R2R′

2

]
,

(9)

whereΛ(ξ) = 4Ib/IA is the normalized beam current, where

the Alfvén current by IA � 17 kA. Equation (9) implies a

restoring effect of the plasma wakefields onto the plasma

centroid if R′2 � 1 and an amplifying effect if R′2 > 1.
The coefficient, defining the magnitude of the force ex-

erted onto the plasma centroid by the beam centroid, is

Cb =
Λ

R2

[
1 − Δρ

(
2

R
+

R
4

)]
. (10)

The centroid deviation of an electron beam acts as a force

onto the plasma centroid, where the magnitude of the effect

scales with the beam current and inversely with the square

of the blowout radius. A finite sheath thickness Δρ reduces

this effect.

The damping-coefficient is

Cd =
R′

4

[
R −
Δρ

2

(
R2

2
− 1

)]
, (11)

and hence implies a damping of the plasma centroid due to a 
relativistic mass gain of electrons in the sheath if R′ > 0 and 
an amplification owing to a relativistic mass loss for R′ < 0.

Discussion and Comparison to Previous Works
We compare these results to the plasma centroid 

equations obtained in previous works. Whittum et al. [6] 
assumed an adiabatically generated ion channel with non-
relativistic sheath electrons at the charge neutralization 
radius. The respective channel centroid equation therefore 
is equivalent to Eq. (8) with coefficients Cp = Cb = 1 and Cd 
= 0.

In a more recent work [7], the plasma centroid equa-
tion was generalized by introduction of the coefficients
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cr = Λ/R2 and cψ = [1 + Ψ(R)]−1 where Ψ = φ − Az

is the wakefield potential, φ the scalar potential, and Az the

longitudinal component of the vector potential. This gener-

alization incorporates the effects of a varying beam current,

changing blowout radius along the beam, and relativistic

velocities of electrons in the sheath, and is equivalent to

Eq. (8) if the coefficients are set to Cp = Cb = crcψ �

Λ/R2 (1 − ΔρR/2) + O(Δ2ρ/R2) and Cd = 0.

In the limit Δρ → 0, the model in Ref. [7] and Eq. (10),

recover the same result Cb → Λ/R2, for which the impact of

the beam centroid deviation onto the plasma centroid devia-

tion scales linearly with the beam current and inversely with

the square of the blowout radius. However, for a finite sheath

thickness, Δρ > 0, a reduced coefficient Cb for blowout radii

R ∼ 1 is found here.

In addition, and in contrast to previous models (cf. [6, 7])

we find a coefficient corresponding to the restoring force

of the plasma centroid which differs from the coefficient

for the driving force (Cp � Cb). It should be noted that

Cp � 0 for Λ = 0 in Eq. (9). This is in contrast to Eq. (2),
for which Cp = 0 for Λ = 0 implies the unphysical prop-

erty that ∂ξXp = const if the beam current drops to zero.

Furthermore, our model includes the effect of damping or

amplification of the channel centroid deviation (Cd � 0) ow-
ing to a relativistic mass gain or loss of the sheath electrons

along the blowout.

COMPARISON TO SIMULATION
RESULTS

In this section we compare the model from Ref. [11],

outlined above, and the model in Ref. [7] to results from

3D particle-in-cell (PIC) simulations with the quasi-static

code HiPACE [17]. We consider a Gaussian drive beam

with an energy of 10 GeV, with a peak current Λ0 = 2.35
(corresponding to 10 kA), and with dimensions σx,y = 0.1
and σz = 1.0. These parameters are close to the parameters
anticipated for FACET-II [18]. The beam features a tilt

of dx/dξ = 0.001, which is introduced from a comoving

position located at ξ0 − 1.0 × σz , where ξ0 specifies the
beam-center.

Figure 1 depicts the temporal evolution of the beam cen-

troid at the tail, at ξ0 + 4.0 × σz . Shown in green is the
curve obtained from numerical evaluation of Eqs. (1) and

(2) and in red the result obtained from numerical evalua-

tion of Eqs. (1) and (8). The black dashed curve depicts

the result from a 3D PIC simulation. The sheath thickness

observed in the simulation is compatible with Δρ = 0.2,
which is the value used for the numerical solutions of the

above differential equations. Furthermore, the longitudinal

field Ez(ξ), extracted from the PIC simulation, is used for

the computation of R(ξ) and R′(ξ).

As seen in Figure 1, all curves predict the beam centroid

to initially grow significantly owing to hosing and to saturate

for greater times because of the betatron decoherence from

a differing energy change along the beam (cf. [8]). This

effect is incorporated in the beam centroid equation (1).

Figure 1: Beam centroid evolution at the tail of a 10 GeV,

10 kA drive beam.

However, while the channel centroid, Eq. (2) overestimates

the beam centroid amplitude, the new equation (8) is in good

agreement with the PIC simulation result. The accurate

reproduction of hosing at the tail of the beam is possible by

means the new model since Eq. (9) implies a finite restoring

force for the channel centroid for Λ→ 0. This is in contrast

to the unphysical behavior of X ′
p → const forΛ→ 0 implied

by Eq. (2). In addition, Eq. (10) implies a reduced growth

rate of the hose instability compared to Eq. (2).

CONCLUSION
In this work, a generalized plasma centroid equation for

the description of hosing in PWFAs, derived in Ref. [11], is

outlined and used to model the beam centroid evolution at

the tail of a 10 GeV, 10 kA Gaussian drive beam in a PWFA.

We find an excellent agreement between results from PIC

simulations and the new model. The accurate investigation

of the channel and beam centroid evolution at comoving

positions behind the drive beam is relevant for the study of

the impact of the hosing of a drive beam onto the dynamics

of a trailing beam in PWFAs. Hence, the presented model

provides an important basis for the accurate modeling of

hosing in PWFAs and for the possibility to understand and

improve the stability of compact plasma-based accelerators.
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