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Abstract
Iterative learning control (ILC) is an open loop control

strategy that improves the performance of a repetitive system
through learning from previous iterations. ILC can be used
to compensate for a repetitive disturbance like the beam
loading effect in resonators. Assuming that the beam loading
disturbance is identical for all iterations, the learning law
can be non-causal; it can anticipate the disturbance and
preemptively counteract its effect. In this work, we aim to use
ILC to cancel beam loading effect on amplitude and phase.
Feedback controllers are not fast enough for this purpose. A
normal feed forward controller may not be sufficient as well
if there is a difference between the feed forward signal and
the beam loading current. Therefore, the goal is to use ILC
to adaptively cancel the beam loading effect.

INTRODUCTION
In a linear accelerator, such as a cavity resonator, the goal

is to establish and maintain a standing wave electromagnetic
field with constant amplitude and phase. A feedback con-
trol loop is responsible for maintaining constant amplitude
and phase despite various disturbances. The electromag-
netic field within the cavity can be assumed as stored energy.
When a bunch of particles passes through the cavity, a por-
tion of the energy is transferred from the field to the beam,
resulting in a drop in the accelerating field. This effect is
referred to as beam loading. In superconducting cavity res-
onators, this effect can be significant as the ratio of the beam
loading energy loss to the total energy stored in the cavity
could be up to 4% [1].

Feedback controllers are not fast enough to compensate
the beam loading effect. It is preferred to use feedforward
controllers to preemptively counteract with the energy drop
by increasing the cavity voltage just before the beam ar-
rival. At Japan Proton Accelerator Research complex (J-
PARC), a multi-harmonic RF feedforward system is used
to compensate beam loading in 3 GeV rapid cycling syn-
chrotron (RCS) [2]. The feedforward controller uses the wall
current monitor (WCM) to pick up the beam signal Ibeam.
The controller then generates an additional signal equal to
−Ibeam on top of the driving RF current. This control system
compensates the beam loading of the three main harmonics
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(h = 2, 4, 6). In TESLA linear accelerator, adaptive feedfor-
ward control is used to compensate the beam loading and
dynamic Lorentz force detuning [3].

In this work, we aim to use iterative learning control (ILC)
to cancel the beam loading effect. The idea of iterative learn-
ing control (ILC) is to improve the performance of a repeti-
tive system through learning from previous iterations [4]. It
can be used on systems that perform the same task multiple
times like a robot arm tracking the same path repeatedly, or
to compensate for a repetitive error like the beam loading
effect in resonators.

ILC is basically an open loop control strategy that im-
proves as a result of repetition and learning. For a repetitive
system, a nonlearning feedforward controller leads to the
same tracking error on each iteration. For such controllers,
the error signals obtained from previous repetitions remain
unused, although they can provide valuable information on
the controller performance. The goal of ILC is to incorporate
the error signals from previous iterations toward improving
the performance of the controller [4]. Since ILC is essen-
tially an open loop feedforward controller, it has to be used
in conjunction with a feedback loop. The feedback loop is
responsible to compensate non-repeating disturbances, noise
and model uncertainties. The ILC, on the other hand, rejects
repeating disturbances faster than the feedback loop can.

SYSTEM MODELLING
Amplitude and Phase in Self-Excited Loop

A block diagram of the self-excited loop (SEL) is shown
in Figure 1 [5]. The filter represents the cavity resonator. In
time domain, the relationship between the input vg and the
output voltage v of the resonator is given by

Üv(t) + 2(1 + β)ζuω0 Ûv(t) + ω2
0v(t) = 2βζuω0 Ûvg(t), (1)

where β is the coupling coefficient, ζu is the unloaded damp-
ing ratio, and ω0 is the natural frequency. Since SEL is a
positive feedback loop, it oscillates at a frequency for which
the total phase shift in the loop is an integer multiple of 2π
radians.

To keep the loop frequency or phase of the oscillation
constant despite variations in the filter transfer function, it
is desired to compensate for the changes in the phase of the
oscillation by adding a controllable amount of loop phase
shift. This is done by adding a signal in quadrature as shown
in Figure 1 [5].

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML083

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T27 Low Level RF

THPML083
4847

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Figure 1: Block diagram of a self-excited loop, with in phase
and in quadrature signals for phase stabilization.

Assuming that θl is chosen such that the loop oscillates at
cavity’s resonance frequency ω0, we will form in phase and
in quadrature signals as shown in Figure 1, referred to as
vi and vq respectively. The addition of in quadrature signal
introduces an additional phase shift given by χ = tan−1 vq

vi
,

and the amplitude of the signal before going through the
amplifier is given by A =

√
v2
i + v

2
q .

To analyze the effect of adding in phase and in quadrature
signals, one can use the input-output differential equation of
a resonator given by Eq. (1), using the following expressions
for input and output of the resonator in Figure 1

v = Veiφ,

vg = ei(θ+φ)(vi + ivq).
(2)

Calculating the time derivative of the input and output
and substituting them into Eq. (1) leads to

ÜVeiφ + i2ω ÛVeiφ − ω2Veiφ + 2ζω0 ÛVeiφ

+ i2ζω0ωVeiφ + ω2
0Veiφ =

2γζω0(iωei(θ+φ)(vi + ivq) + ei(θ+φ)( Ûvi + i Ûvq)).

(3)

Removing eiφ and using ζω0 =
1
τ gives

ÜV + i2ω ÛV + V(ω2
0 − ω

2) +
2
τ
ÛV +

i2
τ
ωV

=
2γeiθ

τ

(
iω(vi + ivq) + Ûvi + i Ûvq

)
.

(4)

Assuming that voltage variations are much slower than an
RF cycle ( ÛV � ωV) and using the approximation ω2

0 −ω
2 ≈

−2ω(ω − ω0) leads to

V(
i2ω
τ
− 2ω∆ω) + i2ω ÛV =

2γeiθ

τ

(
iω(vi + ivq)

)
(5)

Multiplying both sides by −iτ2ω ,

τ ÛV + V(1 + iτ∆ω) = γeiθ (vi + ivq). (6)

We will now assume that δvi and δvq are independent
variables in the control loop, and δV and δω are dependent
variables as follows

τ( ÛV + δ ÛV) + (V + δV)(1 + iτ(ω + δω) − iτω0)

= γeiθ (vi + δvi + ivq + iδvq).
(7)

Subtracting Eq. (6) from Eq. (7), ignoring δVδω and
applying Laplace transform

sτδV + δV + iτ∆ωδV + iVτδω

= γ(cos θδvi − sin θδvq + i(cos θδvq + sin θδvi)).
(8)

The real and imaginary parts of Eq. (8) can be separated
and written in matrix form as follows

[
sτ + 1 0
tan φ τV

] [
δV
δω

]
= γ

[
cos θ − sin θ
sin θ cos θ

] [
δvi
δvq

]
, (9)

where tan φ = τ∆ω. Assuming V , 0 we have

[
δV
δω

]
=

[
γ cos θ
sτ+1 −γ sin θ

sτ+1
γ
τV

(
sin θ − tanφ cos θ

sτ+1
) γ

τV

(
cos θ + tanφ sin θ

sτ+1
)] [

δvi
δvq

]
.

(10)
Assume that we have chosen θ = φ = 0 so that the loop

frequency ω tracks the resonator frequency ω0, in order to
have maximum voltage at the cavity. Therefore, Eq. (10)
will be simplified as[

δV
δω

]
=

[ γ
sτ+1 0
0 γ

τV

] [
δvi
δvq

]
. (11)

Since the instantaneous frequency of the loop ω is deriva-
tive of the phase of the loop signal, or δω = sδφ, Eq. (11) can
be written in terms of amplitude and phase of the resonator
as follows [

δV
δφ

]
=

[ γ
sτ+1 0
0 γ

sVτ

] [
δvi
δvq

]
. (12)

Therefore, two approximately decoupled control loops can
be assumed for amplitude and phase given by δV = γ

sτ+1δvi
(a first order low pass filter) and δφ = γ

sVτ δvq (an integrator),
respectively.

Iterative Learning Control
A block diagram of the ILC controller is shown in Figure 2.

The output of the ILC at the j + 1 iteration is u j+1 and its
inputs are the error from the previous iteration ej and the
ILC output from the previous iteration u j . The data from the
previous iteration is stored in memory blocks. A common
ILC updating law is [4]

u j+1(k) = Q(q)[u j(k) + L(q)ej(k + 1)], (13)
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Figure 2: iterative learning control block diagram in the
control loop.

where k is the time index, q is the forward time-shift opera-
tor, Q(q) is the Q-filter and L(q) is defined as the learning
function. The control law in Eq. (13) uses the control out-
put at the previous iteration at the same time (u j(k)), and
error at the previous iteration corresponding to future time
(ej(k + 1)). Since it is assumed that the error is repeating,
and the disturbance is not varying from iteration to iteration,
the learning function L(q) can be either causal or non-causal.
A non-causal learning function utilizes the “future” values
of error to proactively cancel its effect.

SIMULATION RESULTS
The block diagram in Figure 2 was implemented on

Simulink. Two decoupled control loops were assumed for
controlling amplitude and phase. In the amplitude control
loop, the transfer function of the plant (the resonator is Fig-
ure 2) is a

s+a ; whereas in the phase control loop, it is 1
as .

The cutoff frequency of the anti-aliasing filter is assumed to
be 10 times the resonator bandwidth to minimize its effect
on the loop signal. The plant and the anti-aliasing filter are
simulated in continuous time, and the PI and ILC controller
are simulated in discrete time domain. The sampling time
is assumed to be T = 1. Beam loading is modelled as an
input disturbance, a square wave with duty factor of 1

2 and
period of 200 seconds. Iteration length is equal to the period
of beam loading. Assuming a = 0.1, the gain of the PI con-
troller for the amplitude and phase control loops is shown in
Table 1.

Table 1: PI Parameters for Amplitude and Phase Control
Loops

Amplitude loop Phase loop

P 2.82 16.32
I 0.37 0.30

The simulation results for the amplitude and phase con-
trol loops ares shown in Figures 3 and 4, respectively, for

Figure 3: Simulation results for the amplitude control loop.

Figure 4: Simulation results for the phase control loop.

15 iterations. The signal shown in blue is the beam loading.
The green signal is the output of the anti-aliasing filter when
the ILC controller is not connected. It shows how the system
would respond with only the PI controller in the loop. The
red curve shows the system response with the ILC in the
loop. The figure shows that the ILC controller can reduce
the error at the edges of beam loading to 0.17 for amplitude
and 0.08 for phase, compared to the PI. The learning filter
used in this simulation is an average of the next three “future”
error samples, and Q = 0.95.

These simulation results show that the controller improves
its performance at each iteration by using the error informa-
tion from the previous trial; whereas a non-learning con-
troller, like the PI, results in the same error every iteration.

CONCLUSION
Beam loading effect is a repetitive disturbance and a feed

forward controller can be used to deal with it faster than a
feedback loop. Iterative learning control is an open loop con-
trol strategy that uses the error information from the previous
iteration to improve the control output at the current iteration.
In this work, ILC was implemented on amplitude and phase
control loops in SEL, and the simulation results showed that
the system performance was improved significantly within
the first 15 iterations.
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