
VIRTUAL VELA-CLARA: THE DEVELOPMENT OF A VIRTUAL
ACCELERATOR

T. J. Price, R. F. Clarke, H. M. C. Cortes, G. Cox, D. J. Dunning, J. K. Jones,
B. D. Muratori, D. J. Scott, B.J.A. Shepherd, P. Williams

STFC Daresbury Laboratory, Warrington, U.K.

Abstract
A Virtual Accelerator (VA) has been developed to

mimic the accelerators Versatile Electron Linear Accelerator
(VELA) and Compact Linear Accelerator for Research and
Applications (CLARA). Its purpose is to test control room
applications, run start-to-end simulations with multiple sim-
ulation codes, accurately reproduce measured beam prop-
erties, conduct ‘virtual experiments’and gain insight into
‘hidden beam parameters’. This paper gives an overview
into the current progress in constructing this VA, detailing
the areas of: developing a ‘Virtual EPICS’control system,
using multiple simulation codes (both particle tracking and
analytic), the development of a ‘Master Lattice’and the con-
struction of a Python interface in which to run the VA.

INTRODUCTION
VELA and CLARA are adjoined linear accelerators based

at Daresbury Laboratory, STFC, U.K. Once fully built,
CLARA will be a 90 m long Free Electron Laser (FEL)
producing ultra-short photon pulses [1] and provide beam
to experimental stations for novel accelerator research and
development. In building CLARA the development of a VA
was deemed necessary to aid: underpinning simulation work,
the production of software applications to automate proce-
dures, the development of machine learning techniques to
generate bespoke beam/laser setups, and preliminary testing
of novel experiments.

The following requirements of the VA were set to provide
support for VELA-CLARA and also aid in the development
of a future UK X-FEL. The structure of the VA must be
generic enough to accommodate another accelerator. The
requirements were:

• A Virtual EPICS [2] controls system to interact with
the VA.

• The ability to use multiple simulation codes.
• Use of a Master Lattice which is simulation-

independent and extendable.
• For all simulations to generate simulation-independent

output files.
• The ability to carry out start-to-end simulations.
• Have dedicated outputs in the Virtual EPICS for hidden

beam parameters.
• Run different simulation codes in a similar way.
• Interface between different simulation codes.

Hidden beam parameters are values that can be obtained
by simulations but cannot be easily observed with a direct
measurement of the beam. This greater level of available
information on the VA has powerful implications when con-

structing virtual experiments and machine learning applica-
tions.

Figure 1 indicates what sections are currently available in
the VA. In building the current VA of VELA-CLARA the
following requirements have been achieved:

• Can interact with the VA using a Virtual EPICS control
system.

• Can use two simulation codes (ASTRA [3] and
SAMPL [4]).

• Have a framework that enables easy-use of multiple
simulation codes.

• Use of a Master Lattice.
• Use of simulation-independent output files.

Automation of certain procedures (for instance momentum
measurements and beam alignment) are already being de-
veloped into software applications and they are being tested
with this VA.

STRUCTURE OF THE VA
The VA has been split into two main areas: the Virtual

EPICS control system and a framework that runs simula-
tions named the "Online Model" This overall structure is
illustrated in Fig. 2.

Virtual EPICS (VE)
EPICS is a Supervisory Control and Data Acquisition

(SCADA) system used to present a uniform and simple inter-
face to VELA-CLARA subsystems. It provides a standard
way to send and read data via process variables (PVs) over
a control network. The VE emulates the VELA-CLARA
machine via cloned PVs from the EPICS used on VELA-
CLARA and are hosted on a virtual Linux environment [5].
Within the VE system the functionality to read and set vari-
ables was enabled with added realistic effects, like the ramp-
ing of magnet currents, altering the positions of moving
screens, and the option of adding noise to certain signals
(see Fig. 3). The VE is maintained on a local server with the
help of GitLab [6], and can be accessed for updates. The vir-
tual Linux environment is set up on a users local computer
using the third party software OracleBox [7]. The VE is
broadcast on a local IP address with a specific port number
so only the user can access that VE system. Prefixing all the
VE PVs with the characters "VM-" further ensures that the
user does not accidentally alter PVs on the real machine.

Controllers To set variables in the VE high-level soft-
ware controllers are used. The controllers are APIs that
allow users to set and read EPICS PVs via Python scripts [8].

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML060

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

THPML060
4773

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Figure 1: Schematic indicating sections of VELA-CLARA currently in the Virtual Accelerator. Not all elements have been
added, but will in the upcoming future.

Figure 2: Block schematic indicating the components of
the VA. The highlighted blocks show components already
implemented.

They were initially developed for VELA-CLARA but have
been extended so that the user can also choose to set and
read PVs on their own VE. The controllers have been writ-
ten in C++ and wrapped up into a .pyd file in order to be
used in Python [9–11]. As well as reading and setting PVs
they provide a place to implement automated procedures
and process data. Once these calculations and procedures
are established in the controllers, they can be implemented
more permanently in lower-level control systems.

Using these controllers allows procedures to be written
and tested using the VE. Simulation runs with the Online
Model can provide realistic output to the VE for the user
during this testing.

Online Model (OM)
The OM [12] is a combination of simulation codes, a

Master Lattice and the Python code (named ’Python Glue’)
that allows the user to run different simulation codes as

Figure 3: Demonstration of a VE solenoid current changing
with time. The read back current can be seen to have an
added ramp/decay time and noise. The level of noise can be
adjusted.

simply and as seamlessly as possible. This section goes into
these current components contained in the OM.

The Python Glue This code creates uniformity between
all the simulations codes. Its job is to use the VE variables
or settings files and conduct simulations. Depending on the
type of simulation code this can involve building specific
lattice files, creating particle distributions, standardizing
output files and coordinate transformations between different
simulation runs. The aim was to make the interface as model-
independent as possible and flexible enough to start multiple
points down the beam line (see Listing 1).
import OnlineModel .SAMPL. v2 . sampl as sampl
import OnlineModel .ASTRA. v2 . a s t r a a s a s t r a

Def ine and i n i t i a l i s e c o n t r o l l e r s .

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML060

THPML060
4774

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

Use c o n t r o l l e r s t o s e t u p t h e VE
i n t h e same way as VELA−CLARA.

Run OM
s t a r t e l emen t name (RF Gun on CLARA l i n e)
s t a r t = ’CLA−HRG1−GUN−CAV’
s t o p e l emen t name
(Sc reen i n s e c t i o n j o i n i n g VELA and CLARA)
s t o p = ’CLA−C2V−DIA−SCR−01 ’

ASTRA = a s t r a . Se tup (c o n t r o l l e r s = [])
ASTRA. go (s t a r t , s t op , ’ i n p u t F i l e . i n i ’)
o r
SAMPL = sampl . Se tup (c o n t r o l l e r s = [])
SAMPL. go (s t a r t , s t op , ’ i n p u t F i l e ’)

Listing 1: A Python script example of how to run different
simulation codes using VE settings.

Listing 1 indicates the key lines of code needed to run
an ASTRA or SAMPL simulation. Behind the functions
go and Setup for each of the codes, the Python glue code
generates lattice files from the Master Lattice and the neces-
sary settings in the VE. The simulation is then run and the
output data interpreted and sent back to PVs in the VE (e.g.
a beam’s horizontal position through a BPM). The input file
will determine the initial position, charge and momentum of
the macro-particles making up a bunch. Depending on the
simulation code used, the execution of creating lattice files
and running simulations will be slightly different due to the
differences in how certain codes are designed.

ASTRA ASTRA is a simulation code that has been used
for some of the underpinning simulation work for VELA and
CLARA [13]. The VA (and therefore ASTRA simulations)
needed to have the flexibility to: start at two gun positions;
go through any possible pathway through the machine; and
for the beam to travel off the designed trajectory. ASTRA
simulations were split up into straight sections, each in their
own local coordinate system to help create such flexibility
when running simulations.

During a simulation, if a bunch is tracked through a dipole,
the simulation would end just before the bunch reached the
dipole, get rotated, and inserted into a separate simulation
which would take the bunch round the bend. If travelling
along the ideal beam trajectory the bunch will have a centroid
position x=y=z=0 upon exiting the dipole and be travelling
along the z-axis.

SAMPL An analytic simulation code called Simple Ac-
celerator Model in MatLab (SAMM) [14] was converted into
Python code for the OM as an alternative simulation code
to ASTRA. The converted version of SAMM was named
the Simple Accelerator Model Python Library (SAMPL).
Having access to the source code has provided a place to test
out novel beam tracking techniques and determine trends
in VELA-CLARA faster than ASTRA. An example of one
such technique being developed is an analytic approach to
tracking particles through combined RF and Solenoid fields
[15]. This approach is currently being included in SAMPL.

Space charge effects can be included in the tracking
through certain elements within a simulation, however the
speed decreases significantly as the number of particles in-
creases. Due to the object-oriented construction of SAMPL
adding in other quicker methods to calculate space charge
effects is easy to implement and future work to do so is
underway.

The Master Lattice This is the collection of files that
defines all the machine elements within the VA. For each
element there is data stored on its position, rotation, calibra-
tions, field maps, and so on. The choice was made to use
YAML files to store this data [16]. This markup language
provides a readable, extensible structure in which data can
be edited and added if needed. The Python glue uses these
files to determine pathways through the machine based on
the user’s start and stop points in a given simulation.

FURTHER WORK
The upcoming improvement to the VA are:
• Moving the VE off virtual Linux environments and

onto a sever.
• Extend the Master Lattice to include more of VELA-

CLARA.
• Add Elegant, Genesis, Puffin, CSRTrack and any other

codes needed.
• Add in other ways to calculate space charge effects in

SAMPL.
• Get realistic RF signals and image signals.
• Standardise output files of all simulation codes.
• Add hidden beam variables to the VE.

REFERENCES
[1] J.A. Clarke et al., "CLARA Conceptual Design Report", in

Journal of Instrumentation, May 2014, Vol. 9, pp. T05001
(2014)

[2] EPICS, https://epics.anl.gov/index.php

[3] ASTRA, http://www.desy.de/~mpyflo/

[4] SAMPL Source Code, https://github.com/
VELA-CLARA-software/OnlineModel/tree/master/
SAMPL/sourceCode

[5] R.F. Clarke et al, "CLARA Virtual Accelerator", in Proc.
16th International Conference on Accelerator and Large Ex-
perimental Physics Control Systems (ICALEPCS 2017)

[6] GitLab, https://about.gitlab.com

[7] OracleBox, https://www.virtualbox.org

[8] D.J. Scott, "Hardware Controllers: A ‘Mid-Level’ System
for Controlling Hardware and Accessing Data on VELA /
CLARA", in Internal Notes of ASTeC Accelerator Physics
Group, Nov. 2015

[9] Controllers Source Code, https://github.com/
VELA-CLARA-software/VELA-CLARA-Controllers

[10] D.J. Scott, "Beam characterisation and machine development
at VELA", in Proc. 7th International Particle Accelerator
Conference (IPAC 2016), Busan, Korea, THPOW019

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML060

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

THPML060
4775

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

[11] Boost, http://www.boost.org

[12] Online Model, https://github.com/
VELA-CLARA-software/Online-Model

[13] P. Williams et al., "Developments in the CLARA FEL Test
Facility Accelerator Design and Simulations", in Proc. 7th
International Particle Accelerator Conference (IPAC 2016),
May 8-13, 2016

[14] SAMM Manual, http://pcwww.liv.ac.uk/~awolski/
SAMM/SAMM.pdf

[15] B.J.A. Shepherd, http://projects.astec.ac.uk/
VELACLARAManual/index.php/Parasol

[16] YAML Website, http://www.yaml.org

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML060

THPML060
4776

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

