COHERENT TRANSITION RADIATION GENERATED FROM TRANSVERSE AND LONGITUDINAL ELECTRON DENSITY MODULATION

Abstract

\section*{Abstract}

Coherent Transition radiation (CTR) of a given frequency is commonly generated with longitudinal electron bunch trains. In this paper, we present a study of CTR properties produced from simultaneous electron transverse and longitudinal density modulation. We demonstrate via numerical simulations a simple technique to generate THz -scale y frequencies from mm -scale transversely separated electron 3 beamlets formed into a ps-scale bunch train. The results and a potential experimental setup are discussed.

A. Halavanau ${ }^{1,2}$, P. Piot ${ }^{1,2}$, A. V. Tyukhtin ${ }^{3}$, S. N. Galyamin ${ }^{3}$, A. Benediktovitch ${ }^{4,5}$
${ }^{1}$ Department of Physics and Northern Illinois Center for Accelerator \& Detector Development, Northern Illinois University DeKalb, IL 60115, USA
${ }^{2}$ Fermi National Accelerator Laboratory, Batavia IL 60510, USA
${ }^{3}$ Saint Petersburg State University, Saint Petersburg, Russia
${ }^{4}$ Belarusian State University, Department of Theoretical Physics and Astrophysics, Minsk, Belarus
${ }^{5}$ Center for Free Electron Laser Science, DESY, Hamburg, Germany

INTRODUCTION

Coherent transition radiation (CTR) is commonly used in radiation generation setups and temporal bunch profile diagnostics [1-7]. Conventionally, the radiation spectral content in these experiments is determined by the bunch longitudinal modulation. It was demonstrated before, that transverse electron density modulation of ultra-short pulses can lead to additional spectral harmonics localized off-axis from the main radiation cone [8]. Recently, the formation and propagation of transversely modulated photoelectron bunches was investigated at the Argonne Wakefield Accelerator (AWA) facility [9]. In brief, the transverse modulation was imposed using microlens array (MLA) shaping technique and the spacing between resulting beamlets was controlled by solenoid and quadrupole lenses. Alternatively, electron beamlets can be generated via intercepting masks or other transverse shaping techniques in the accelerator. In this paper, we present a numerical simulation of CTR spectral properties, generated from the beams with simultaneous transverse and longitudinal modulation.

ANALYTICAL MODEL

A detailed analytical derivation of the transition radiation from a point charge as a solution of Maxwell's equations between two media can be found in classical textbooks $[10,11]$. The electromagnetic field of a point charge falling onto a metallic plate can be calculated using the "method of images" [12], where for every charge incident on an infinite conducting plane $\left(q, \vec{e}_{i}\right)$ there is a "mirror" charge $\left(q^{\prime}, \overrightarrow{e_{i}^{\prime}}\right)$ behind the plane forming a pair of real and image charges.

Figure 1: Simplified schematics of the "line" electron beamlet arrangement with spacing d.

When a virtual pair of charges approaches the plane, it emits radiation that is mathematically equivalent to the transition radiation from a point charge [11]. It is assumed that both real and imaginary charges instantly slow down and vanish upon hitting the plane. The Fourier transform of the magnetic component of a radiation field can be written as [11] 1 :

$$
\begin{align*}
& \vec{H}_{\omega}=\frac{q}{2 \pi c} \sum_{i=1}^{N}\left(\frac{\overrightarrow{e_{i R}} \times \vec{e}_{i}}{1-\overrightarrow{e_{i R}} \cdot \vec{e}_{i}}-\frac{\overrightarrow{e_{i R}^{\prime}} \times \overrightarrow{e_{i}^{\prime}}}{1-\overrightarrow{e_{i R}^{\prime}} \cdot \overrightarrow{e_{i}^{\prime}}}\right) \times \tag{1}\\
& \times \frac{\exp \left(i \omega R_{i} / c+i \omega t_{i}\right)}{R_{i}},
\end{align*}
$$

where N is the number of charges q, \vec{e}_{i} is the velocity vector for i-th electron, $\overrightarrow{e_{i R}}=\vec{R}_{i} / R_{i}$ is the vector from the point of incidence to the detector, R_{i} is the distance from the point of incidence to the detector, t_{i} is the time of arrival of i-th charge at the metallic plate, ω is the radiation frequency. The spectral-angular density of the radiation can then be computed as [11]:

$$
\begin{equation*}
\frac{d^{2} W}{d \omega d \Omega}=c R^{2}\left|\vec{H}_{\omega}\right|^{2} \tag{2}
\end{equation*}
$$

The detector is assumed to be located in the far zone, such that $R \gg \sigma$ and $R \gg \lambda$, where σ is the electron beam size

[^0]02 Photon Sources and Electron Accelerators
and λ is the generated radiation wavelength. Under these assumptions, \vec{R}_{i} can be considered as $\vec{R}_{i} \approx \vec{R}$ or in spherical coordinates $R_{i r} \approx R, R_{i \theta} \approx \theta$ and $R_{i \phi} \approx \phi$, where the origin is set to the beam incidence point. Then the bracket term in Eq. 1 can be rewritten according to:

$$
1-\overrightarrow{e_{i R}} \cdot \vec{e}_{i}=1-\overrightarrow{e_{R}} \cdot \vec{e}_{i} \quad 1-\overrightarrow{e_{i R}^{\prime}} \cdot \overrightarrow{e_{i}^{\prime}}=1-\overrightarrow{e_{R}^{\prime}} \cdot \overrightarrow{e_{i}^{\prime}},
$$

where $\overrightarrow{e_{R}}=\vec{R} / R$. In case of a relativistic electron beam $\vec{e}_{i}=\vec{\beta}$ and $\vec{e}_{i}^{\prime}=\vec{\beta}^{\prime}$, where $\beta \approx 1$. Thus, Eq. 1 can be simplified as:

$$
\begin{align*}
\vec{H}_{\omega} & \approx \frac{q}{2 \pi c R} \vec{f} \sum_{i=1}^{N} \exp \left(i \omega R_{i} / c+i \omega t_{i}\right), \\
\vec{f} & =\left(\frac{\overrightarrow{e_{R}} \times \vec{\beta}}{1-\overrightarrow{e_{R}} \cdot \vec{\beta}}-\frac{\overrightarrow{e_{R}} \times \overrightarrow{\beta^{\prime}}}{1-\overrightarrow{e_{R}} \cdot \overrightarrow{\beta^{\prime}}}\right) \tag{3}
\end{align*}
$$

Additionally, one can introduce bunching factor as:

$$
\begin{equation*}
F=\left|\sum_{i=1}^{N} \exp \left(i \omega R_{i} / c+i \omega t_{i}\right)\right|^{2} \tag{4}
\end{equation*}
$$

It can be shown that Eq. 3 is correct when $\psi \gg$ $\sqrt{2 \sigma / R \cos \alpha}$, where $\cos \psi=\overrightarrow{e_{R}} \cdot \vec{\beta}^{\prime}, \cos \alpha=\vec{\beta} \cdot \vec{n}$ and \vec{n} is the normal to conducting the plate.
Note, that the path differences ΔR_{i} remain finite when $R_{i} \rightarrow \infty$. The resulting spectral-angular density can be then rewritten in a shorter form:

$$
\begin{equation*}
\frac{d^{2} W}{d \omega d \Omega} \approx \frac{q^{2}}{4 \pi^{2} c} f^{2} F \tag{5}
\end{equation*}
$$

So far we haven't made any assumptions on the form of the charge transverse distribution. Now let's consider a case of equidistant point charges (beamlets) with spacing d arranged in a "line" formation. Additionally, the incidence angle is $\alpha=45^{\circ}$. Figure 1 illustrates such an arrangement for both "real" and "imaginary" charges.
If number of charges N and spacing matches the condition $\omega(N d)^{2} / c R \ll 1$, transverse bunching factor $F_{\perp}(\omega)$ can be computed analytically as

$$
\begin{equation*}
F_{\perp} \approx \frac{\sin ^{2} N \xi / 2}{\sin ^{2} \xi / 2} ; \quad \xi=\frac{\omega d}{c \cos \alpha}(\sin \alpha-\sin \theta \cos \phi) \tag{6}
\end{equation*}
$$

where ω is radiation frequency. This expression can be used for spectral density calculation when $R \rightarrow \infty$. Additionally, Eq. 6 has its j-th harmonic maximum at:

$$
\begin{equation*}
\omega_{\perp j}=\frac{2 \pi j c \cos \alpha}{d(\sin \alpha-\sin \theta \cos \phi)}, \tag{7}
\end{equation*}
$$

which yields that $F_{\perp}(\omega)$ will present modulation when $\theta \neq \alpha$ while $\phi \neq 0$. Thus, a transverse modulation in charge density results in narrow-band harmonics in spectral density.

NUMERICAL SIMULATIONS

We consider a 50 MeV electron beam formed with transverse electron beamlets with the spacing $d=3 \mathrm{~mm}$ and temporal length of $\sigma_{t}=0.333 \mathrm{ps}$. Additionally, beamlets form a bunch train with $\tau=3.33 \mathrm{ps}$ duration. If no transverse density modulation was introduced, such a bunch train yields $\omega / 2 \pi=333 \mathrm{GHz}$ narrow band signal; see Fig. 2. Let us investigate the implications of the aforementioned beam parameters on the resulting CTR spectral content. To perform numerical simulations, a code that computes radiation spectral density (Eq. (2)) with exact expression for \vec{H}_{ω} (Eq. (1)) and approximation (Eq. (3)) was developed. Code validation and initial simulations are discussed in [8].

Figure 2: Transverse Gaussian spectrum of a single beamlet with $\sigma_{t}=0.333 \mathrm{ps}$ (left) and single beamlet bunch train spectrum with $\tau=3.33 \mathrm{ps}$ (right).

Figure 3: Resulting spectrum of the beamlet formation bunch train at $R \approx 5 \mathrm{~m}$ and $\phi=0^{\circ}$ (left) and $\phi \approx 4^{\circ}$ (right).

Figure 4: Spatial localization of the CTR in case of single Gaussian beamlet (left) and the extened CTR source formed by the beamlet bunch train (right) at the first harmonic frequency of $\omega / 2 \pi=333 \mathrm{GHz}$.
Transition radiation forms a notable "donut"-shape radiation cone in case of a regular gaussian electron transverse density distribution. The absense of radiation inside the cone is attributed to the fact that it is not emitted along the mirror charge velocity $[10,11]$. Such a spectrum is displayed in Figs. 2,4 for the case of single gaussian beamlet. The maximum of the radiation is contained around $1 / \gamma \approx 0.57^{\circ}$ which
is in agreement with the electron beam energy. Hereafter we assume the detector in the far-zone meaning $R \gg 8 \mathrm{~mm}$ and the electron beam has very small divergence at the metallic screen location. $N=8000$ particles were used in simulations of both transverse Gaussian bunches and beamlets configurations.
The spectral content of the radiation generated by 8 gaussian beamlets arranged in a bunch train is depicted in Fig. detector position $R(r, \theta, \phi)$. This effect is the result of the interference of the radiation cones from individual beamlets, and the addtional time delay R_{i} / c associated with the detector position. At the first spectral harmonic ceases to be localized in space, additionally the CTR "donut" cone transforms into an extended source; see Figs. 3,4. However, its frequency tends to remain relatively narrow-band, therefore motivating the experimental attempt.

TENTATIVE EXPERIMENT

An experimental setup to register the radiation with the aforementioned properties will invoke a beamline with a bunch compressor to generate longitudinal microbunching. Additionally, an optical setup similar to the one recently comissioned at Argonne Wakefield Accelerator [9,14] will generate the necessary transverse modulation. The beam dynamics study associated to the propagation of the transversely modulated beams through the bunch compressor will be performed as a continuation of this work. Some preliminary studies were recently done at AWA facility [15].

CONCLUSIONS

In conclusion, transverse density modulation can lead to the peculiar spectral content of electron bunch trains. We demonstrated, via numerical simulations, that the first harmonic frequency of the CTR associated to the transversely modulated bunch train can be dependent of the detector location. Additionally, within a given solid angle $\Delta \Omega$ the produced CTR has a "color gradient". The presented study can be extended to the cases of non-periodic trasnverse modulation and ramped longitudinal current profiles.

ACKNOWLEDGEMENTS

A.H. is grateful to V. Litvinenko for the initial discussion during IPAC16. This work was supported by the US Depart-
ment of Energy under contract No. DE-SC0011831 with Northern Illinois University. The work by the AWA group is funded through the U.S. Department of Energy, Office of Science, under contract No. DE-AC02-06CH11357. The work of A.H. and partially P.P. is supported by the US Department of Energy under contract No. DE-AC02-07CH1 1359 with Fermi Research Alliance, LLC.

REFERENCES

[1] U. Happek, A. J. Sievers, and E. B. Blum, Phys. Rev. Lett., 67:2962-2965, (1991).
[2] W. Barry, AIP Conference Proceedings, 390(1):173-185, (1997).
[3] Y. Shibata, T. Takahashi, T. Kanai, K. Ishi, M. Ikezawa, J. Ohkuma, S. Okuda, and T. Okada, Phys. Rev. E, 50:14791484, (1994).
[4] C. Settakorn, PhD thesis, Stanford University (2001).
[5] T. J. Maxwell, PhD thesis, Northern Illinois U. (2012).
[6] S. Antipov, C. Jing, M. Fedurin, W. Gai, A. Kanareykin, K. Kusche, P. Schoessow, V. Yakimenko, and A. Zholents, Physical review letters, 108(14):144801, (2012).
[7] D. Mihalcea, C. L. Bohn, U. Happek, and P. Piot, Phys. Rev. ST Accel. Beams, 9:082801, (2006).
[8] A. Halavanau et al., in Proc. of FEL'17, Santa Fe, New Mexico, USA, paper TUPO15, (2017).
[9] A. Halavanau et al., Phys. Rev. Accel. Beams, 20:103404, (2017).
[10] D. J. Jackson, Classical Electrodynamics. Wiley, 1998. New York.
[11] V. L. Ginzburg and V. N. Tsytovich, Transition Radiation and Transition Scattering. Hilger, 1990. London.
[12] V. N. Krasilnikov and A. V. Tyukhtin, "Reflection theorems for some anisotropic media", Radiophysics and Quantum Electronics, 27, 717-723 (1984).
[13] S. Casalbuoni, B. Schmidt, P. Schmüser, V. Arsov, and S. Wesch, Phys. Rev. ST Accel. Beams, 12:030705 (2009).
[14] M.E. Conde et al., in Proceedings of IPAC'10, Kyoto, Japan, paper THPD016, (2010).
[15] A. Halavanau, et al, Proc. of IPAC2018, Vancouver, Canada, paper THPAK060, (2018).

[^0]: ${ }^{1}$ Additionally, an analytical expression for a TR EM-field in case of a finite metallic plane can be found in [13].

