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Abstract
As the wiggler period averaging is subject to reliability is-

sue, many efforts on FEL codes without such approximations

are made at the cost of heavier computation loads. However,

efforts toward increasing the reliability of such approxima-

tion are few. In this report, we present a new capability

of IMPACT code suite based on such approximation with

the addition of perturbative corrections to wiggler period

averaging error.

INTRODUCTION
Wiggler Period Averaging (WPA) has been widely used in

FEL simulation codes to reduce numerical load significantly.

Once the slowly varying envelope approximation (SVEA) is

applied, the remaining length dimensions of important phys-

ical meaning includes wiggler period, Rayleigh length, gain

length, betatron oscillation period and etc. Among them, in

general, the wiggler period is significantly short compared

to others. Rayleigh length can also be as short as the wiggler

period for the high order Gaussian modes [1]. However,

in presence of the electron beam with FEL interaction, the

Gaussian modes are no longer eigenmodes as the diffraction

is compensated by the gain. For this reason, WPA is a quite

efficient method unless gain length, betatron period or any

other length scales of importance are close to the wiggler

period. The reliability of WPA can be further enhanced if

perturbative corrections are added to it. In this report, we

calculate the next order terms in equations of motion and

field equation of WPA and add them as correctional terms.

We especially focus on the non-resonant condition, i.e. large

energy deviation from the resonant energy γR defined by the
user input wavenumber kr .

PARTICLE PUSHER
An effective Hamiltonian integrated over a wiggler period

can be obtained using Lie map method.

Bare Hamiltonian
We start from the following Hamiltonian

H (x⊥, p⊥, ct,−γ; z) = −
√
γ2 − 1 − (px − ax)

2 −
(
py − ay

)2
where we ignored space-charge potential and ax,y is the

normalized vector potential assumed to be

ax = −Keff cos (kuz) + ar (1)

ay = Kk2x xy cos (kuz) (2)
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for a planar wiggler with

Keff = K
(
1 + k2x

x2

2
+ k2y

y2

2

)
(3)

where K is the normalized peak wiggler strength, ku is the
wiggler wave number, kx,y are the natural focusing strength,
and ar is the vector potential of the radiation field which we
write by

ar = �
∑
h≥1

Kh (x, t) eihkr (z−ct) (4)

where h is the harmonic number, kr is the fundamental
mode wave number and Kh is the h-th harmonic radiation
envelope.

We further transform the Hamiltonian into

H = (ku + ks) η −
√

krη2 − 1 − (px − ax)
2 −

(
py − ay

)2
whose longitudinal canonical pairs are

θ ≡ kr (z − ct) + kuz, η ≡ γ/kr (5)

Then, the phase of Eq. (4) becomes ih (θ − kuz). From now

on, we assume the following order of magnitudes: kx x, ky y,
px , py � O

(
10−2

)
, and 1/γ �O

(
10−3

)
. We also consider

large energy deviation δ = γ/γR − 1 � O
(
10−2

)
from the

resonant energy encompass future research like the use of

laser-plasma accelerator [2]. And keep terms to the next

leading order during the derivation of the Effective Hamilto-

nian.

Lie Map Perturbation
We decompose the Hamiltonian by H = S + F +V where

S =
∫ λu

0
H dz/λu is wiggler period averaged Hamiltonian,

V is the potential of the 1st order of radiation field and

F = H − S − V the fast oscillating (of wiggler frequency)

part. Accordingly, we factorize the map by [3],

H = V · F · S (6)

F = eGF (7)

V = eGV (8)

where S is the unperturbed exact map of S, and

GF = −

∫ z

0

dz :F int : +
1

2

∫ z

0

dz1

∫ z1

0

dz2 ::F int
2 :F int

1 : +. . . (9)

GV = −

∫ z

0

dz :V int : +O
(
K2
h

)
(10)

are the generators. The colons represent Poisson bracket [3],

z = 0 is the starting location of integration, and

F int
i ≡ S(zi)F(zi) (11)

V int
i ≡ F (zi)S(zi)V(zi) (12)
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are the interaction picture potentials propagated by S and

F · S. It can be shown that, to the leading order, GF is [4]

GF = −λu
K4k2x
16k2uγ3

(13)

which is negligible in general. Therefore, the effective

Hamiltonian is

Heff = S − GV/λu (14)

On the other hand, the interaction picture field envelope

K int
h
= FSKh can be written as

K int
h (z) = Kh(z) +

Ke f f

kuγ
sin (kuz)

∂

∂x
Kh(z). (15)

The 2nd term is the coupling between the wiggling motion

and the transverse field variation which can serve as a cor-

rection to WPA. This term was also included in TDA-H [5].

However, it can be shown that, when integrated over a wig-

gler period, it only appear at even harmonics to the leading

order. It can be significant correction term to even harmonics

for small transverse beam size and low energy. Here, we con-

sider corrections to WPA only for h = 1 mode. Therefore,
we drop this term but include longitudinal field variation as

a corrections to WPA by,

K int
h (z) = Kh + z

∂

∂z
Kh (16)

where Kh ≡
∫ λu

0
Kh dz/λu .

In the same way, FEL phase propagates as

θint = θ + �θz − ξ sin 2 (kuz) − ζ sin (kuz) (17)

where

�θ ≡ ku −
kr
2γ2

(
1 + p2x + p2y +

K2
e f f

2

)
(18)

ξ ≡
krK2

eff

8kuγ2
(19)

ζ ≡
krK
kuγ2

px (20)

Then, the generator of the field potential become

GV = λu�
∑
h≥1

eihθ

γ

[
Ke f f

∫ h

C

+px

∫ h

1

+Ke f f

∫ h

zC

∂z

]
Kh

(21)

where integration parameters, to the leading order, are∫ h∈odd

C

=
1

2

(
JhξR
− h−1

2

+ JhξR
− h+1

2

)
∫ h∈even

C

=
1

2

(
JhξR
− h+2

2

− JhξR
− h−2

2

)
hζ
2∫ h∈even

1

= JhξR
− h
2

(22)

∫ h∈even

SC

=
1

4i

(
JhξR
− h−2

2

− JhξR
− h+2

2

)

where J f
i is the Bessel function of order i of argument f ,

and ξR ≡
krK

2

8kuγ
2
R

is the resonant amplitude of wiggling mo-

tion which is defined to reduce numerical burden of Bessel

function evaluation. As for the fundamental mode h = 1,
we include terms to the next leading order.

∫ 1

C

=
1

2

(
JξR
0

− JξR
1

) (
1 +

ih �θλu
2

)
−
1

4

�θ

ku
Ξ

−
Δξ

2

[(
1 −

1

ξR

)
JξR
1
+ JξR

0

]
(23)

∫ 1

zC

=
1

4

(
JξR
0

− JξR
1

)
+

i
8π
Ξ (24)

where Δξ ≡ ξ − ξR, and

Ξ ≡
∑

l�− h−1
2

JξR
l

l
+

∑
l�− h+1

2

JξR
l

l + 1
(25)

�θ and Δξ are important only when γ/γR − 1�O
(
10−2

)
.

FIELD SOLVER
Using SVEA, the Maxwell’s equation reads[

∇2⊥ + 2ihkr

(
∂

∂z
+ ku

∂

∂θ

)]
Kh

= −2
eZ0
mc2

∫ λu

0

Jx(z)e−ih(θ−kuz)dz (26)

The integration on right hand side is difficult as particle

positions are function of z. We take only the monopole
out of the multipole expansion method [6] on the source

term. Higher order multipoles represent coupling between

wigglingmotion and field variation and thus can also serve as

a correction to WPA. TDA-H [5] included the dipole terms.

However, it can be shown that the dipole terms are significant

only for even harmonics. Instead, we include correction to

WPA through the integration parameters Eqs. (23, 24) of the

monopole source,

Si
h = −2

eZ0
mc

(kr + ku)
∑
j

δ
(
x − x̄j

)
δ
(
y − ȳj

)

×qjwi, j
e−ihθ j

γ

(
Ke f f

∫ h

C

+px

∫ h

1

)†
(27)

where wi, j is the weight function of j-th particle governing
source deposition on the grid point θ = θi , Si

h
is the source

at the grid point θi , Z0 is the vacuum impedance, and x̄j ,
and ȳj are the monopole location defined by averaging x(z),
and y(z) over a wiggler period respectively.

SIMULATION
Here, we use a example of SASE simulation to see how big

can be the effects of the WPA correction terms. The correc-

tions to the WPA and the WPA are implemented in IMPACT
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code suite [7] including particle migration across numerical

mesh [8]. Here, we suppress the particle migration effect

by running in steady-state mode. The parameters we used

are γ = 1.0 × 103, Ipeak = 3k A, lu = 3cm, and lr = 32nm.
Figures 1 and 2 show the case of σδ = 0.005. Although
we have large energy spread, the effect of correction term is

shown to be negligible.

Figure 1: Comparison between WPA and addition of correc-

tion terms(cWPA) for a energy spread σδ = 0.005. Exactly
same particle data, mesh number and sizes are used.

Figure 2: Closer look of Fig.1. There also is a subtle differ-

ences between GENESIS [9] and our WPA implementation.

CONCLUSION

The next leading order terms of WPA, in consideration of

large energy spread, is derived and implemented in IMPACT

code suit [7]. Simulation shows little difference between

WPA and the next leading order terms added to WPA, even

when large energy spread σδ = 0.005 is assumed. This
result supports the reliability of WPA for the future laser-

plasma accelerator beam.
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