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Abstract
Collective instabilities pose a major threat to the quality

of the high brightness electron beams needed for the opera-
tion of a free electron laser. Multi-stage bunch compression
schemes have been identified as a possible source of such
an instability. The dispersive sections in these compressors
translate energy inhomogeneities within the bunch into lon-
gitudinal charge density inhomogeneities. In conjunction
with a collective force driving locally density-dependent en-
ergy modulations this leads to intricate longitudinal beam
dynamics. As a consequence of the thin shape those bunches
form in the longitudinal phase space, efficient simulation of
such systems is not straight forward. At high resolutions,
the numerical representation of the phase space density on
a uniform grid is too wasteful, due to the large unpopulated
phase space regions. In this contribution we present ad-
vances made in the development of a simulation code that
addresses the problem of sparsely populated phase spaces
by means of quadtree domain decomposition. A focus lies
on the explanation of the underlying tree data structure.

INTRODUCTION
Recently, we have outlined a one-dimensional model,

that is able to capture the dynamics of the formation of
microbunching [1–4] driven by longitudinal space-charge
(LSC) effects in bunch compressors of free-electron laser
(FEL) injectors [5–7]. One remarkable feature of this
model is its ability to describe the collective Coulomb self-
interaction of the electron bunch, as well as the dynamics in
all other relevant beam-line elements by strictly time-discrete
maps. Following the Vlasov picture, this model allowed us to
formulated the evolution of the phase-space density (PSD)
of an electron bunch by employing Perron-Frobenius op-
eratorsM ∈ lin(L1(R2,R),L1(R2,R)) associated to these
maps M : R2 → R2, which relate the current PSD Ψ(tn; ·)
to the time-forward PSD Ψ(tn+1; ·) via

Ψ(tn+1, ·) =MnΨ(tn, ·) ≡ Ψ(tn, ·) ◦ M−1, (1)

where Ψ : [t0, tmax] ×R
2 → R+, which is to be interpreted in

the sense that
∫
A⊆R2 Ψ(tn; ®z)d®z gives the probability to find

any of the electrons in the phase-space region A.
While this approach absolutely allows for interesting an-

alytical investigations [6,9], in the general case numerical
simulation is still inevitable. Simulating such Vlasov sys-
tems is encumbered by the fact that phase-space densities
of FEL-type electron bunches typically form a thin band
∗ philipp.amstutz@desy.de
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Figure 1: Refinement of two-dimensional (left) and three-
dimensional (right) hyperrectangles.

that meanders through phase-space; a feature which we call
exotic. This makes it impossible to capture the phase-space
density in a tight-fitting rectangular simulation region. Con-
sequently, the simulation region will contain vast areas that
are actually void of any phase-space density, rendering the
approach generally wasteful with respect to computational
resources and unfeasible for high resolutions. To overcome
this problem we have developed a simulation code, that re-
lies on tree-based domain-decomposition to adapt to the
phase-space density in order to minimize computational
overhead. While the current working-area of the code is
the aforementioned two-dimensional phase-space, we have
designed the underlying data-structures and algorithms in a
dimension-agnostic fashion to allow for an easier upgrade
to higher (d) dimensions in the future. In this contribution
we present some of the intricacies of the resulting 2d-tree
data-structure.

2d TREE DATA-STRUCTURE

The general idea of tree-based domain-decomposition is
to recursively divide a hyperrectangular region into smaller
child-regions, as illustrated in Figures 1; a process called
refinement. By refining only those regions that are “inter-
esting” for the problem at hand (in our case phase-space
regions that contain significant density), this allows to ef-
ficiently describe even objects with an exotic shape. By
keeping track of the parent-child relations a tree graph is
formed. While this approach is well-known and used in
many applications for two- and three-dimensional objects
in form of quadtrees and octrees respectively [8], it can be
generalized to arbitrary dimension d [9]. Assuming the d-
dimensional parent-hyperrectangle covers the region given
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by the Cartesian product of d closed intervals

R =
d−1⊗
i=0
[ui, vi]︸ ︷︷ ︸
≡Ii

(2)

where ∀i : i ∈ {0, . . . , d − 1} =⇒ ui,vi ∈ R ∧ ui < vi ,
the first step is to find a suitable order for the 2d child-
hyperrectangles, covering the regions R∗0, . . . , R∗2d−1. Firstly
we halve the original intervals into lower parts I∗

i,0 and upper
parts I∗

i,1

I∗i,0 =
[
ui,

vi − ui
2

]
, I∗i,1 =

( vi − ui
2

, vi

]
, (3)

so that Ii = I∗
i,0 ∪ I∗

i,1. The parent-hyperrectangle can then
be reconstructed via

R =
d−1⊗
i=0

I∗i,0 ∪ I∗i,1 =
⋃

®b∈{0,1}d

d−1⊗
i=0

I∗
i, ®bi
=

2d−1⋃
n=0

d−1⊗
i=0

I∗
i, ®b(n)i

,

(4)
with an arbitrary, surjective ordering function

®b : {0, . . . , 2d − 1} → {0, 1}d, (5)

which then defines the location of the nth child-
hyperrectangle. A natural choice for this ordering function
®b(n) is the binary decomposition of n, implicitly defined by

d−1∑
i=0

2i ®b(n)i = n, (6)

which indeed is unique [10] and hence is surjective on this
domain. It has the striking advantage that most contempo-
rary programming languages represent integer types in this
format so that the ®b(n)i values are accessible by a simple
memory look-up. Doing so, the center points ®c∗ and widths
®w∗ of the child-hyperrectangles are the related to those of
their parent-hyperrectangle ®c, ®w via

®c∗n,i = ci − (−1) ®b(n)i
®wi

2
and ®w∗n,i =

®wi

2
, (7)

compare also Figure 1. With this, we are now able to han-
dle 2d-trees in a well-defined manner. In two dimensions
this ordering results in parent-child relations as depicted in
Figure 2.

As can be seen, such a graph does not contain any di-
rect information regarding neighborhood relations between
the hyperrectangles. The length of a path connecting two
neighboring hyperrectangles can be as large as 2r, where
r is the recursion depth, and one would have to resort to
sophisticated algorithms in order to find the neighbor of a
given hyperrectangle in the tree [11]. Because direct ac-
cess to these neighborhood relations allows for many elegant
methods in the context of Perron-Frobenius propagation of
phase-space densities, we chose to add them in our imple-
mentation of the fundamental tree structure. Again, the first
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Figure 2: Parent-child relations in a rarely refined quadtree.
Numbers at the solid arrows – pointing from a parent to a
child – indicate the child-index n. Dashed arrows point from
child to parent nodes.

step is to impose an ordering of the neighbors, i.e. define
the notion of the “mth neighbor” of a hyperrectangle. Ev-
ery hyperrectangle potentially has 2d neighbors, that is one
in both, the positive and negative direction along each di-
mension, so that we have to relate the neighbor index m to
the dimension/axis a and direction p of the neighbor. This
can be achieved using the following interpretation m, based
again on its binary decomposition

m = (. . . b3b2b1︸      ︷︷      ︸
a

b0︸︷︷︸
p

)2, (8)

so that the least significant bit gives the direction, while the
others determine the direction. Using the C(-style) bit-wise
operators [12] “&” and “»” these can be elegantly calculated
via

a = bm/2c = m»1 (9)
p = m mod 2 = m&1. (10)

We make the observation that any neighbor B of a given
hyperrectangle A is is either a sibling of A, i.e. they share the
same parent hyperrectangle, or B is a child of a neighbor of
the parent of A. The former is the case, if B lies in a direction
in which A is already among the outermost of its siblings,
which is determined by the child-index n of A. Using again
bit-wise operators the statement “the mth neighbor of an nth
is its sibling” can be checked by evaluating

(n»(m»1)) & 1 != m & 1 , (11)

of which the truth table is shown in Figure 3. If B is not
a sibling of A, it can be seen that it is a child of the mth
neighbor of A. Generally, the child-index of B in this parent
hyperrectangle is determined by the fact A and B share their
relative positions within their respective parent hyperrectan-
gles (which might be the same) with respect to all dimension
but the m»1th, in which it is the exact opposite. Hence, the
mth neighbor of an nth child A is an oth child (either of the
parent A, or of the mth neighbor of A), where o can be cal-
culated by flipping the m»1th bit of n, which can be achieved
by employing the bit-wise exclusive-or operation “ˆ”

o = n ˆ (1«(m»1)). (12)
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Figure 3: Truth table of the statement “The mth neighbor of
an nth child is its sibling.”. Cases in which the statement is
true are marked in white, while black marks cases where it
is false.
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Figure 4: Neighborhood relations in a rarely refined quadtree.
Numbers at the solid arrows indicate the neighbor-index m.
First-level neighbors are indicated by dashed arrows and are
not numbered.

With this, we have completely identified the location of all
the neighbors of all hyperrectangles in the tree. Note, how-
ever, that this approach relies on the fact that the neighbors
of the parent of any hyperrectangle is already known and
therefore is not suitable to determine neighbors in a bare,
unmodified 2d-tree. The solution is to make sure that in the
implementation, from the very start every time a hyperrect-
angle is generated while refining the tree, it determines its
neighbors and stores references to them. As no hyperrectan-
gle can be generated before its parent has been generated, it
is hence ensured that the method above is applicable. The
resulting neighborhood graph is exemplified for the two-
dimensional case in Figure 4.

EXECUTION STRATEGY OF A
PERRON-FROBENIUS STEP

In order to numerically evaluate Equation (1), the very
first step is to determine a suitable time-forward simulation
window to accommodate Ψ(tn+1; ·), which would be a tricky
task if no geometric information about the geometry of the
initial phase-space density Ψ(tn; ·) was available. The pre-
sented tree structure, however, provides such information
and offers an elegant method to find this minimum bounding-

box. If we have a quadtree covering supp(Ψ(tn, ·)) – assum-
ing Ψ(tn) was cut off at some threshold for the simulation –
we can make use of the neighborhood relations to determine
the boundary of the phase-space density δsupp(Ψ(tn, ·)) by
finding those hyperrectangles that lack at least one neighbor.
Then, using the map Mn, points on this boundary can be
tracked forward, resulting in a very good approximation of
the boundary of the time-forward phase-space density

δsupp(Ψ(tn+1, ·)) = M(δsupp(Ψ(tn, ·))), (13)

based on which a tight-fitting root hyperrectangle of the
time-forward tree can be efficiently found, by determining
the minimum bounding rectangle of these points.

Starting from this root rectangle, the time-forward tree
can most efficiently be generated by a procedure similar to
what is known as flood-fill in context of computer graphics.
A seed point is determined by tracking forward some point
from the initial support ®z ∈ supp(Ψ(tn, ·)) =⇒ M(®z) ∈
supp(Ψ(tn+1, ·)). Then, the initial root hyperrectangles is
refined at this point until the required recursion depth is
reached and the flood fill begins at the resulting seed hy-
perrectangle. In this flood-fill procedure, it is determined
for each of the (potential) neighbors of an hyperrectangle
whether they contain density above a given threshold. This
can, for instance, be achieved in a heuristic manner by sam-
pling the time-forward phase-space density Ψ(tn+1, ·) on the
interface between both hyperrectangle. If the test is pos-
itive, the tree is refined in a way so that the neighbor is
actually generated and the process continues at the newly
generated hyperrectangle. This approach minimizes unnec-
essary function evaluations, in the sense that Ψ(tn+1, ·) is
rarely evaluated outside of its support.

CONCLUSION
We have presented the fundamentals of a 2d-tree data

structure with neighborhood relations. Such a structure
allows for the efficient Vlasov simulation of arbitrary-
dimensional phase-space densities even it they exhibit an
exotic structure. The structure provides additional geomet-
ric information about the shape of the phase-space density,
which can be used to implement sophisticated simulation
strategies, which may be used to overcome many difficulties
arising in Vlasov simulation efforts.
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