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Abstract
We present a version of the Low Lagrangian tailored to

treat space-charge effects in particle accelerators: the La-
grangian is relativistic and uses a space coordinate as the
independent variable. From this Lagrangian we obtain the
corresponding Hamiltonian. From the Hamiltonian we ob-
tain equations of motion for the 8 canonical variables, which
can be plugged into a symplectic numerical integrator. We
will finally discuss the possibility of numerically solving
this problem using an explicit symplectic integrator.

INTRODUCTION
A Lagrangian for non-relativistic collisionless plasmas

was proposed by Low [1]. Relativistic versions of this La-
grangian have been proposed for both the electrostatic [2]
and the full electromagnetic [3] cases. In particle accelera-
tors, the electrostatic approximation is generally sufficient
as particles do not move at relativistic speeds with respect to
each other. The electrostatic Lagrangian does not explicitly
depend on the partial derivative of the scalar electric poten-
tial with respect to time (∂tφ). This degeneracy makes it im-
possible to determine a momentum canonically conjugated
to φ for a Lagrangian with time as the independent variable.
To lift this degeneracy we propose to use a Lagrangian with
a space coordinate as the independent variable.

LAGRANGIAN
For simplicity we restrict ourselves to the case of a beam

moving straight in the z direction. We also assume that all
particles move in the same forward direction (i.e. ∂z t > 0).
To simplify our notation we choose to work in a system of
units where the speed of light, the vacuum permitivity and
the vacuum permeability are all equal to 1. Starting from
Ref. [2], and proceeding to a change of independent variable
as described in Ref. [4], we obtain the following Lagrangian:

L(X,X′, φ, φ′; z) =

−

∬ (
m̂
√
−1 − X′2 + t ′q̂φ(X)

)
d

3
x1d

3
p1

+
γ0(z)

2

∫
(∇φ(x1))

2 d
3
x1 ,

(1)

where q̂=q · f1(x1, p1) is the charge density, m̂=m · f1(x1, p1)
is the mass density, X(x1, p1) = (x, y, it), ∇φ = ∂xφ+ ∂yφ+
φ′, primes denote partial derivatives with respect to z, and
γ0(z) is the Lorentz factor of the beam centroid.
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Taking partial derivatives of L with respect to X′ and φ′
gives us the canonical momenta:

Px =
m̂x ′√

t ′2 − x ′2 − y′2 − 1
,

Py =
m̂y′√

t ′2 − x ′2 − y′2 − 1
,

iE =i
m̂t ′√

t ′2 − x ′2 − y′2 − 1
− iq̂φ,

Pφ =γ0φ
′ .

(2)

The first three are the usual transverse canonical momenta
and i times the “single-particle” total energy. The fourth
momenta is what we were looking for.

HAMILTONIAN
Performing the Legendre transformation yields:

H(X,P, φ, Pφ; z) =

−

∬ √
−m̂2 − P2

x − P2
y + (E − q̂φ(X))2 d

3
x1d

3
p1

+
γ0
2

∫ (
P2
φ

γ0
− ∂xφ

2 − ∂yφ
2

)
d

3
x1 ,

(3)

where P = (Px, Py, iE). The associated canonical Poisson
bracket is: {F,G} =∬

δF
δX

δG
δP
−
δF
δP

δG
δX

d
3
x1d

3
p1 +

∫
δF
δφ

δG
δPφ
−
δF
δPφ

δG
δφ

d
3
x1,

(4)
where δ denote functional derivatives. Applying this Poisson
bracket leads to the following 8 equations of motion:

x ′ =
Px√

−m̂2 − P2
x − P2

y + (E − q̂φ)2
, P′x = −q̂t ′∂xφ,

y′ =
Py√

−m̂2 − P2
x − P2

y + (E − q̂φ)2
, P′y = −q̂t ′∂yφ,

it ′ = i
E − qφ√

−m̂2 − P2
x − P2

y + (E − q̂φ)2
, iE ′ = −q̂t ′∂itφ,

φ′ =
Pφ
γ0

, P′φ = −γ0(∂xxφ + ∂yyφ) −

∫
t ′q̂ d

3
p1 .

(5)
There is no new physics in these equations: the first three
pairs are similar to the ones obtained from the Courant-
Snyder’s Hamiltonian [5]. The last two equations combined
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together lead to:
∇2φ = −

ρ

γ0
, (6)

where ρ =
∫

t ′q̂ d3
p1. One recognizes Poisson’s equation

with relativistic space dilatation.
At this point one could discretize the system – the phase

space into macro particles, and the real space on a grid
– and solve the equations of motion for all (X,P) of the
macro particles and all (φ, Pφ) of the grid nodes using a
numerical integrator. Since the equations of motion are all
obtained from the same Hamiltonian it is tempting try to
use a symplectic integrator. This integrator would, a priori,
have to be implicit, since these equations (except the trivial
one for φ′) depend explicitly on both positions and momenta.

PARAXIAL TRANSVERSE
HAMILTONIAN

For practical application to accelerators, it is essential
to add to our Hamiltonian the contribution from external
(focusing) forces. We choose to do it by adding a vector
potential term A. The Hamiltonian becomes:

H(X,P, φ, Pφ; z) =∬ (
q̂Az(X) −

√
−m̂2 + e2 + p2

x + p2
y

)
d

3
x1d

3
p1

+
γ0
2

∫ (
P2
φ

γ0
− ∂xφ

2 − ∂yφ
2

)
d

3
x1 ,

(7)

where e = E − q̂φ(X) and px,y = (Px,y − q̂Ax,y)/P0.
Let’s now transform the longitudinal variables (it, iE) into

(∆t,−∆E), where:

∆t = t − t0 ,

∆E = E − E0 ,

E0 =
m̂ t0√
t ′20 − 1

= m̂ γ0 .
(8)

For simplicity we will assume that A is time independent,
which implies that E0 is a constant. The generating function
for this canonical transformation is:

F2(t,∆E) = −
(
t −

∫
t0(z) dz

)
(E0 + ∆E) . (9)

The new Hamiltonian is obtained by adding ∂zF2 to the
Hamiltonian density under the first integral.

Restricting ourselves to the transverse motion, i.e. assum-
ing a coasting beam with ∆E = 0, and making the paraxial
approximation, i.e. assuming that Px − q̂Ax , and Py − q̂Ay

are small compared to P0 =
√

E2
0 − m2, yields:

Hparaxial(x, Px, y, Py, φ, Pφ; z) =∬ (
p2
x + p2

y +
(m̂q̂φ(X))2

2P3
0

− q̂Az(X)
)

d
3
x1d

3
p1

+
γ0
2

∫ (
P2
φ

γ0
− ∂xφ

2 − ∂yφ
2

)
d

3
x1 .

(10)

Applying the Poisson bracket given in Eq. (4), we obtain
the following equations of motion:

x ′ = px , P′x = −q̂
(
τ′∂xφ + px∂x Ax + py∂x Ay + ∂x Az

)
,

y′ = py , P′y = −q̂
(
τ′∂yφ + px∂y Ax + py∂y Ay + ∂y Az

)
,

φ′ =
Pφ
γ0

, P′φ = −γ0(∂xxφ + ∂yyφ) −

∫
τ′q̂ d

3
p1 ,

(11)
where τ′ = q̂m̂2φ(x, y)/P3

0 .

CONCLUSION AND FUTURE WORK
We have shown that it is possible to describe space-charge

problems using a space coordinate as intependent variable.
Our purpose is to exploit the similarities between Eq. (10)
and the paraxial single-particle Hamiltonian in Ref. [6] to
develop an explicit symplectic integrator to solve Eqs. (11).
We are currently working on the implementation of a toy
model to test the validity of this approach.
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