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Abstract
A key quantity in simulating collective beam instabilities

is the wake potential of a bunch of particles whose charge

distribution is continuously evolving in time. However, ob-

taining such wake potential is only possible if a wake excited

by a single particle in the surrounding environment is known.

A practical self-consistent approach was developed to obtain

an effective wake function from a numerical wake potential

computed for a finite length bunch. The wake potential is

processed to a numerical impedance which is decomposed

into a set of well-known analytical wake functions. The

decomposed impedance is then transformed back into time

domain and, thus, converted into an effective wake function

which is by nature physical and most consistent with the

numerical wake potential. Though the method is limited

by the initial numerical impedance data and the choice of

impedance decomposition, the retrieved wake function can

be used in instability simulations with a bunch whose length

is comparable to that used in the electromagnetic field solver.

We show that the method can be applied to a general 3D

structure, which allows finding effective wake functions of

realistic vacuum chambers.

INTRODUCTION
One of the main sources of wakefields in particle acceler-

ators is the deviation of a vacuum chamber from a smooth

pipe, namely variation of the aperture along the machine.

These fields, the so called geometric wakefields, are known

to impose limitations on machine performance in terms of

beam-induced heating of vacuum components, single and

multibunch collective beam instabilities [1, 2]. Deducing

them is, therefore, of crucial importance for the study of the

above issues. For a limited number of simple geometries

the analytical or semi-analytical forms of wake functions are

known [3–5]. However, in most cases, realistic vacuum com-

ponents are much more complicated and the corresponding

wake functions must be found using other methods. A well-

established method in obtaining a wakefield in a general 3D

structure is the use of Electromagnetic (EM) field solvers,

such as GdfidL [6], ECHO [7, 8], CST Particle Studio [9],

which simulate the passage of a bunch in a given structure

in time domain. The numerical computation of wake poten-

tials as described above is becoming a common step in the

machine design of an accelerator worldwide [10–13] as they

help identify in advance beam-intensity-dependent issues

caused by the geometry of a vacuum component. Despite

the great capabilities of these solvers, they are limited to

calculations of a wake potential of a finite length bunch.
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On the other hand, a key quantity in simulating collective

beam instabilities is the wake potential of a bunch whose

charge distribution is continuously evolving in time. This

in turn signifies that the knowledge of a wake function, i.e.

the wake of a point-charge, is essential in order to calcu-

late the former. One typical, rather crude approach is to

approximate the impedance of the machine with a single

broadband resonator with guessed values for the involved

parameters and convert it to time domain. Another approach

is to approximate it by the numerical wake potential of a

very short bunch. However, it would require a significant

amount of computation time and the choice of the length of

a test bunch remains a critical issue. Besides, the direct use

of wake potentials derived numerically may associate non-

physical behavior of the latter due to numerical errors [14].

Provided that a set of numerical data from EM solver is avail-

able for the realistic 3D vacuum structures around a ring it

is reasonable to employ them to deduce the wake function

instead of introducing a simplified impedance model without

full justification.

We propose here a method for obtaining an effective point-

charge wake of a general 3D structure from numerical data

provided by an EM solver. We aim to deduce a wake function

which is physical and most consistent with the numerical

wake potential, to be used in instability simulations with a

bunch whose length is comparable to that used in the 3D

EM solver. We will describe more specifically our method

below for the longitudinal plane. The transverse case follows

essentially in the same way.

METHOD AND APPLICATION
Method Basics
As was already mentioned earlier, our underlying objec-

tive is to make the best use of 3D EMwakefields numerically

obtained with an EM solver in simulations of beam instabil-

ity. Usually in the instability simulation, particles receive a

kick due to the wakefield excited by the bunch. In longitudi-

nal plane this kick would correspond to the relative energy

deviation of the particle in the bunch Δδ:

Δδ =
q

E/e
V‖(s; ρ). (1)

here, q is the bunch charge, E is the nominal beam energy,

e is the electron charge, and V‖(s; ρ) is the wake potential
at the relative longitudinal position s of the particle with
respect to the synchronous position. The wake potential

V‖(s; ρ) is given as a convolution of the wakefield W‖(s) of
a point charge and the bunch distribution function ρ(s) :
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V‖(s; ρ) = q
∫ ∞

0

W‖(s′)ρ(s − s′)ds′ (2)

in which W(s) is zero for s < 0 due to causality. While the

wake potential is computed by an EM field solver for a given

3D structure, it is only valid for the bunch profile used in

the simulations. To remove this dependence on the bunch

profile we choose to work with impedance, related to wake

potential as follows

∫ ∞

−∞

V‖(s; ρ)eiωs/cds/c = qcZ ‖(ω)ρ̃(ω), (3)

where ω is the angular frequency, c is the speed of light.
Z ‖(ω) is the coupling impedance which is the FT of W‖(s),
and ρ̃(ω) is the bunch spectrum which is FT of the ρ(s).
Mathematically, an inverse FT of Z ‖(ω) gives the W‖(s).
However, there are several reasons why this would not be

true under the described procedure:

• wakefields simulated by the EM solver are only those

excited by a rigid beam of finite length

• fields are computed numerically solving the Maxwell’s

equations by discretization of the space with a finite

number of grid points

Hence, the more correct nomenclature for the impedance

calculated as described above would be Zρ

‖
(ω) where ρ in-

dicates dependence on the bunch profile ρ(s).
Here, through a least square fit we decompose a numer-

ically obtained Zρ

‖
(ω) into a series of known analytical

impedance functions:

Zρ

‖
(ω) =

∑
k

aρ
k

f ρ
k
(ω) (4)

where aρ
k
are the decomposition coefficients and f ρ

k
(ω)

are the analytical impedance functions. For a geometric

impedance these functions f ρ
k
(ω) include for example induc-

tive, capacitive, resistive and resonator impedances for which

the corresponding wake functions g
ρ
k
(s) are well-known and

can be found in [2,3]. The advantage of the above decompo-

sition is that the resultant function becomes “causal”, and

that the corresponding “effective” wake function is easily

accessible:

Wρ

‖
(s) =

∑
k

aρ
k
g
ρ
k
(s). (5)

In a simulation code, whether in time or frequency domain,

it suffices to just once read in the data on the decomposition

and construct Wρ

‖
(s) or Zρ

‖
(ω). Another useful feature in

fitting the impedance is that it allows us to have a better

physical interpretation of the impedance characteristics of a

given structure, such as the resonances involved, the magni-

tude of inductive impedance at low frequencies and resistive

impedance at high frequencies. We note that for a purely

geometric EM field computation that does not take the elec-

tric conductivity of the chamber material into account, the

width Q and the height R of a resonance are determined by

the length of the integration performed on the s variable.
Since the physical quantities such as a loss factor or an insta-

bility threshold should depend on the area of the resonance

R/Q, the fit should be made on the latter. It is also impor-
tant to note that the quality of Zρ

‖
(ω) calculated by an EM

field solver depends critically on the bunch length and the

mesh size used. One must therefore bear in mind the limit in

frequency only up to which the impedance decomposition

makes sense, especially when a fit made at low frequencies

becomes incompatible at high frequencies.

As was stated earlier, the obtained effective wake function

Wρ

‖
(s) can be used to reconstruct Vρ

‖
(s; ρ) through Eq. 2 and

compare it with the original VEM
‖

(s; ρ) calculated by the
EM field solver. Besides, Wρ

‖
(s) can also be used to recon-

struct a wake potential of a bunch having a different bunch

length from the original value and be compared with the out-

put of an EM field solver. Namely, compare reconstructed

Vρ1
‖
(s; ρ2) with VEM

‖
(s; ρ2). To improve further the quality

of the fit this procedure can be iterated several times. The

weight of the fit may be differentiated in the range of s: for
example the fit may be concentrated only in the short range

seen by the bunch itself if used fir the subsequent simulation

of single bunch effects.

Wake of a Tapered Bellow
We chose to work with the code GdfidL [6] as it is capable

of performing the parallel computation of EM fields in gen-

eral 3D structures. An example structure is a combination of

RF shielded bellows and tapered transitions between round

and octagonal cross-sections of a beam-pipe, hereafter, re-

ferred to as Structure A (Fig. 1). This structure combines

several components typical for many circular machines.

Figure 1: Half of Structure A: taper transition from a round

to octagonal beam pipe and a RF-shielded bellow.

The computation of a wake potential was done using a

test-bunch of σ =10 mm. The longitudinal impedance in

this case can be well described by broad- and narrow-band

resonators, purely inductive and resistive impedances and

the results of the fit are shown in Fig. 2

We proceed with wake potential reconstruction to check

if the improvement of the fit is necessary or the present
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Figure 2: Longitudinal impedance of Structure A: data ob-

tained from the wake potential calculated with a 10 mm

bunch using GdfidL (blue) and resonator fit (red).

version is sufficient for reconstruction. The wake potential

is reconstructed as follows

V‖(s) =
∫ s

0

ρ(s′)
N∑
i=1

W i
‖(s − s′)ds′

+

∫ s

0

ρ(s′)Wof f

‖
(s − s′)ds′.

(6)

where the W i
‖
is the wake function of a i-th resonator and

the Wof f

‖
is the wake-function arising from resistive and

inductive components used in the fit.

Figure 3 shows the comparison of wake potentials recon-

structed from Eq. 6 and the one calculated with GdfidL. We

observe that a rather coarse fit of impedance data shown

in Fig. 2 gives a wake function adequate to reconstruct the

short range wakefield acting on the bunch itself.
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Figure 3: Longitudinal wake potential of Structure A with

σ = 10mm: wake potentials calculated with GdfidL (blue)
and reconstructed from impedance fit (red).

Additional GdfidL computation of Structure A with bunch

lengths of σ =8, 6 and 4mm were done and the computed

wake potentials were compared to the reconstructed ones

from the same impedance fit (Fig. 4). To quantitatively

describe the goodness of obtained results the comparison of

loss factors k ‖ is given in Table 1. The loss factors calculated

with GdfidL and reconstructed wake potentials are within

10% of each other.
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Figure 4: Longitudinal wake potential of Structure A with

σ = 10, 8, 6 and 4 mm: GdfidL data and wake potentials

reconstructed from the resonator fit in Fig. 2.

Table 1: Loss Factors for Wake Potentials Calculated with

GdfidL and Reconstructed Using the Fit in Fig. 2

Test bunch σL mm 10 8 6 4

k ‖ (GdfidL) mV/pC 1.1 2.2 6.6 28.6

k ‖ (reconstructed) mV/pC 1.1 2.4 7.1 28.2

CONCLUSION AND OUTLOOK
The wakefields are an essential part of the beam instability

studies, and deducing them for complex 3D geometries is

a complicated task, requiring the use of EM solvers with a

lot of CPU time. We presented a pragmatic self-consistent

method for obtaining an effective wake function for a general

3D structure based on numerical impedance, calculated for

realistic vacuum components. The wake functions obtained

from decomposition of numerical impedance are known

functions that are causal and satisfy Maxwell’s equations

thus, excluding possible numerical artifacts. Though the

form of the deduced wake function is subject to the choice

of the quality of the impedance decomposition made by the

user, one can improve the precision through several iterations

of “impedance fit - wake potential reconstruction” in a self-
consistent manner. We have shown that the method works

for a standard component and one could repeat the procedure

for each component of the ring to obtain the total effective

wake function for the whole machine which can be used for

subsequent simulations of beam instabilities with a bunch

whose length is comparable to that used in the 3D EM solver.
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