SYMBOLIC PRESENTATION OF NONLINEAR DYNAMIC SYSTEMS IN TERMS OF LEGO-OBJECTS

E. Sboeva ${ }^{*}$, S. Andrianov ${ }^{\dagger}$, A. Ivanov ${ }^{\ddagger}$, E. Krushinevskii ${ }^{\S}$
Saint Petersburg State University, Saint Petersburg, Russia

Abstract

In this paper we propose a symbolic representation of the solutions of the equations of evolution of dynamical systems in the framework of matrix formalism and Lie algebra for a number of elements of the accelerator (in particular, quadrupoles and octupoles) up to the 4-th order. The considered solutions present so-called Lego objects, which are included in the general scheme of the representation beam dynamics and used for its preliminary and computer modeling.

INTRODUCTION

Currently, most of the programs used for preliminary and computer modeling of accelerators are based on numerical methods. The most widely used packages are MAD [1], Cosy Infinity [2], MaryLie [3] and Comsol Multiphysics [4]. MAD, COSY Infinity and Comsol Multiphysics use phase variables to describe the beam using trajectory analysis. However, the problems of modeling involve the selection of optimal parameters for the systems under consideration, so the software to solve such problems should allow a quick change the parameters of the system.

Numerical methods can't cope with such a task, because any change in the parameters leads to a complete recalculation of the trajectories for all considered particles $\left(10^{12}-10^{16}\right.$ in beam). In addition, when we talk about cyclic systems, such as an accelerator ring, the calculations increase in proportion to the number of turns. Thus, for this problem, numerical methods will become very time-consuming.

The Marylee package, though based on symbolic methods, does not support one more prerequisite for providing the fastest solution to the optimization problems of complex systems - the Lego-object approach [5]. The ideology of this approach lies in the fact that the contribution of each element included in the finite system (for example dipoles, quadrupoles and octupoles, etc.) is considered independently from the rest of the system. The resulting solution for one or more elements can be substitute in the "right place". This provides the possibility of easy changes and replacement of elements in the simulation of the final nonlinear dynamic system. This work is an illustration of the application of a new approach to solving problems of preliminary and computer modeling of nonlinear dynamics based on symbolic computation, supported the ideology of Lego-objects,

[^0]as well as allowing for taking into account the symplecticity of the system and is not limited only to trajectory analysis.

THEORETICAL BASIS

The approach uses a matrix formalism combined with the Lie algebra [6]. Due to matrix formalism, it becomes possible to consider the whole beam at the same time, as well as to move from the consideration of coordinates and impulses to the consideration of more convenient for the analysis of quantities.

We should note that although character calculations are time-consuming and result in cumbersome formulas, we should realize this operation only once for each control object in the system. Using this approach, we can not only create the database with Lego-objects but also use it in the process of modeling the systems under consideration. We also can solve the real task of optimization is quickly enough by linking the corresponding Lego-objects and by a setting of the necessary parameters for this objects.

In this section we describe a schematic description of the theory of constructing a solution of a system of ordinary differential equations in an explicit form using perturbation theory. Consider the equation of motion in the form $d \mathbf{X} / d s=\mathbf{F}(\mathbf{X}, s), \mathbf{F}(0, s)=0$, where \mathbf{X} is a vector of phase moments and the arbitrary analytic function $\mathbf{F}(\mathbf{X}, s)$ is defined within a neighborhood of $\mathbf{X}=0, \mathbf{X} \in R^{n}$ and is measurable at $s \in R^{n}$. The following definition for the vector of phase moment is necessary: $\mathbf{X}^{[k]}=\underbrace{\mathbf{X} \otimes \ldots \otimes \mathbf{X}}$ is a vector of
k times
phase moments of the k-th order, representing the k-th Kronecker degree of the phase vector \mathbf{X}. Further $\mathbb{P}^{1 k}(s)$ is a matrix of dimension $(n \times d[n, k])$, where $d[n, k]=\binom{n+k-1}{k}$, the elements of which are the derivatives of the components of the vector-valued function $\mathbf{F}(0, s)=0$ of the k-th order. Note that $\mathbb{P}^{1 k}(s)$ are matrices which include the control parameters of the system. Thus, taking into account the assumption that $\mathbf{F}(0, s)=0$, we can write:

$$
\begin{equation*}
\frac{d \mathbf{X}(s)}{d s}=\sum_{k=1}^{\infty} \mathbb{P}^{1 k}(s) \mathbf{X}^{[k]}(s), \quad \mathbf{X}\left(\mathbf{s}_{\mathbf{0}}\right)=\mathbf{X}_{0} \tag{1}
\end{equation*}
$$

The solution of such a nonlinear system in the form of twodimensional matrices, which can be calculated according to the algorithm presented in [7], can be represented in the form:

$$
\begin{equation*}
\mathbf{X}\left(s \mid s_{0}\right)=\sum_{k=1}^{\infty} \mathbb{R}^{1 k}\left(s \mid s_{0}\right) \mathbf{X}_{0}^{[k]} \tag{2}
\end{equation*}
$$

The matrices $\mathbb{R}^{1 k}\left(s_{0}\right)$ contain coefficients for the corre\geq sponding orders of the elements of the vector \mathbf{X}_{0}. A finite cut-off of this infinite series can be defined which follows from the properties of the object under consideration.

Multi-rotation in cyclic machines leads to the need to preserve the integrals of motion: the law of conservation of energy, symplecticity and etc. The requirements for modern cyclic systems lead to the necessity of using nonlinear control fields up to some k-th order, which in turn leads to a violation of the symplectic property. This is a critical moment for this similar of tasks. In terms of the matrix formalism, the symplecticity condition can be ensured using the Jacobi matrix $\mathbb{M}\left(\mathbf{X}, s \mid s_{0}\right)$ of the transformation $M\left(\mathbf{X}, s \mid s_{0} ; H\right)$ of the dynamical system as follows:

$$
\begin{gather*}
\mathbb{M}^{*}\left(\mathbf{X}, s \mid s_{0}\right) \mathbb{J}(\mathbf{X}) \mathbb{M}\left(\mathbf{X}, s \mid s_{0}\right)=\mathbb{J}(\mathbf{X}) \tag{3}\\
\mathbb{M}\left(\mathbf{X}, s \mid s_{0} ; M\right)=\mathbb{M}\left(\mathbf{X}, s \mid s_{0}\right)=\frac{\partial M\left(\mathbf{X}, s \mid s_{0} ; H\right) \circ \mathbf{X}}{\partial \mathbf{X}^{*}}
\end{gather*}
$$

where H is the Hamiltonian of the system.
Symplectic property can be restored using various methods for trajectory-based modeling, in particular, the methods of canonical transformations [8]. This approach is used for each individual trajectory of particles $\left(10^{12}-10^{16}\right)$ and needs a lot of time. We propose making necessary corrections not in the trajectory, but in the matrices $\mathbb{R}^{1 k}\left(s_{0}\right)$. Our approach is based on the correction of the elements of the transformation matrices $\mathbb{R}^{1 k}\left(s_{0}\right)$ up to the desired order of nonlinearity [9] As a result, the amount of computations performed much less than on-trajectory analysis. Let us note that the simplification procedure must be performed sequentially for all orders (from 1 to the k-th), because the elements of each current transformation matrix have a relationship with the elements of the previous ones.

SOLUTIONS OF SEVERAL ELECTROMAGNETIC ELEMENTS

In this paper, are presented solutions obtained for some basic electromagnet elements used in the construction of particle accelerators: the quadrupoles and the octupoles. Hamiltonians of these elements were obtained at [7]:

Hamiltonian for quadrupole

$H=\frac{1}{8}\left(P_{x}^{2}+P_{y}^{2}\right)^{2}+\frac{K_{1}^{\prime}}{2} x^{2} y P_{y}-\frac{K_{1}^{\prime \prime}}{48}\left(x^{2}+6 x^{2} y^{2}-y^{4}\right)$,
Hamiltonian for octupole

$$
H=\frac{1}{8}\left(P_{x}^{2}+P_{y}^{2}\right)^{2}+\frac{K_{3}}{24}\left(x^{2}-6 x^{2} y^{2}+y^{4}\right)
$$

where $K_{i}=\left(q / c P_{0}\right) A_{1 i}, A_{1 i}$ - vector potential, P_{0}-momentum of an equilibrium particle, q - particle charge, c - speed of light.

Figure 1: Phase portraits of the quadrupole symplectic solution with different parameters: a) $K_{1}^{\prime}=0, K_{1}^{\prime \prime}=2$, b) $K_{1}^{\prime}=0$, $K_{1}^{\prime \prime}=3$, c) $K_{1}^{\prime}=0.4, K_{1}^{\prime \prime}=2$.

Figure 2: Phase portraits of the octupole symplectic solution with different parameters: a) $K_{3}=-1$, b) $K_{3}=0$.

Figure 3: The diagram illustrates the operation of the Legoobjects database.
calculations and obtaining solutions for the simulated system.

CONCLUSION

In this paper, was submitted a method for symbolic solving differential equations of evolution of dynamical systems in the matrix framework and Lie algebra paradigm for quadrupole and octupole up to 4-th order. As an illustration of the results of the approach, we present phase portraits of solutions for quadrupole and octupole with a brief analysis. We note that all solutions can be obtained in some symbolical forms, which allows us obtaining the numerical solutions for varying parameters on demand. The resulting symbolic solutions will be placed in the special database (for Lego-objects) to be able to combine objects and obtain final
solutions depending on the simulated accelerator scheme This database is planned to be used for modeling within the framework of the NICA accelerator project.

REFERENCES

[1] H. Grote and F. C. Iselin, The MAD program (Methodical Accelerator Design), User's Reference Manual (CERN/SL/9013, 1994)
[2] M. Berz, Nuclear Instruments and Methods A363, 100-104 (1995)
[3] A. J. Dragt, L. M. Healy, F. Neri, and R. Ryne, IEEE Trans. Nucl. Sci. NS-32:5, 2311-2313 (1985)
[4] O. Karamyshev, L. J. Devlin, C. P. Welsch, Particle Beam Tracking with COMSOL Multiphysics Software, Comsol conference, Cambridge 2014
[5] S. N. Andrianov, Lego-Technology Approach for Beam Line Design, Proc. EPAC, Paris, 1667-1669 (2002)
[6] A. J. Dragt, D. R. Douglas, Particle tracking using lie algebraic methods, Vol. 215, 122-127 (1984)
[7] S. N. Andrianov, Dynamic Modeling of Particle Beam Control Systems, (Saint Petersburg State University, 2002), 98-103
[8] B. Erdélyi and M. Berz, Physical Review Letters 87, 11, 114302 (2001)
[9] S. N. Andrianov, AIP Conf. Proc. N391, 355-360 (1997)
[10] S. Blanes and F. Casas, A Concise Introduction to Geometric Numerical Integration (CRC Press Book, 2016)
[11] D. M. Himmelblau, Applied Nonlinear Programming (The University of Texas, Austin, Texas, 1972)

[^0]: * e.o.sboeva@gmail.com
 † sandrianov@yandex.ru
 † 05x.andrey@gmail.com
 § krushinevskij@yandex.ru

