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Abstract
In the article, we propose an implementation of the matrix

representation of Lie transform using TensorFlow as a com-

putational engine. TensorFlow allows easy description of

deep neural networks and provides automatic code execution

on both single CPU/GPU and cluster architectures. In this

research, we demonstrate the connection of the matrix Lie

transform with polynomial neural networks. The architec-

ture of the neural network is described and realized in code.

In terms of beam dynamics, the proposed technique pro-

vides a tool for both simulation and analysis of experimental

results using modern machine learning techniques. As a

simulation technique one operates with a nonlinear map up

to the necessary order of nonlinearity. On the other hand,

one can utilize TensorFlow engine to run map optimization

and system identification problems.

INTRODUCTION
Charged particle accelerator consists of a number of phys-

ical equipment (e.g. quadrupoles, bending magnets and

others, see Fig. 1). Design of accelerators and nonlinear

dynamics investigation require accurate computer model of

such complicated system. Each of the physical equipment

can be described by a system of differential equation that

has a complex nonlinear form. For instance, the equation of

radial motion is:

x ′′ =
qH

m0γv

(
H
(Ex−x ′Ez)

v
− (1+x ′2)By + y′(x ′Bx+Bs)

)
,

where electromagnetic fields and particle state vector are

incorporated. For some problems, such as modeling of

long-term dynamics, the traditional step-by-step integration

methods are not suitable due to the performance limitation.

Instead of solving differential equations directly one can

estimate nonlinear matrix map for each physical element in

an accelerator.

NONLINEAR MATRIX MAP FOR
SOLVING OF SYSTEMS OF ODES

The dynamics of charged particles in elect systems that

can be described by nonlinear ordinary differential equa-

tions:
d
dt

X = F(t,X), (1)

where t is independent variable, X ∈ Rn is state vector.

There is an assumption that function F can be expanded in

Taylor series with respect to the components of X. Note
that independent variable t can arise in the equation as an
arbitrary nonlinear function.

∗ 05x.andrey@gmail.com

Figure 1: Schematic map based representation of circular

accelerator.

In the articles [1] the mathematical models that can be

utilized for dynamics description are presented. For instance,

spin-orbit dynamics is described by Newton–Lorentz and T–

BMT equations in curvilinear coordinate system. The coordi-

nates corresponds to the design orbit and can be written as a

state vector X = (x, y, t, px/p0, py/p0, δW, Sx, Sy, Sz, L),
where x and y are transverse and vertical offsets of a parti-

cle, t is physical time of motion, px, py are transverse and
vertical components of momentum, p0 is the momentum,
δW is energy deviation, S = (Sx, Sy, Ss) is vector of spin,
and L is the length of a trajectory.

Matrix Representation of Lie Map
The dynamics of vector X in (1) can be presented in the

form of a Lie transform

M(t |t0) = T exp

(∫ t

t0

LF(τ)dτ
)
,

where LF(τ) is Lie operator associated with vector function
F in (1). TransformationM is presented in form of the time-

ordered exponential operator and can be identified with the

dynamical system itself.

On the assumption that the function F allows its expansion
in Taylor series, the required solution of equation (1) in its

convergence region can be also presented as a series:

X(t) =M ◦ X0 =

∞∑
k=0

RkX[k], F =
∞∑
k=0

PkX[k] . (2)

In [2] it is shown how to calculate matrices Rk either

analytically or numerically. The main idea is replacing dif-

ferential equation (1) by the equation

R′
ik(t |t0) =

k∑
j=i

Pi j(t)Rjk(t |t0), 1 ≤ i < k ,

where Pi j = P1(j−i+1)P(i−1)(j−1), P1k = Pk , and R1k = Rk .
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Numerical Map Estimation
Another way to estimate matrix coefficients (Wk = Rk) of

a truncated map

X(t) = W0(t)+W1(t)X0 +W2(t)X[2]
0
+· · ·+Wk(t)X[k]

0
, (3)

is by utilizing an appropriate numerical step-by-step integra-

tion method. Taking derivative of the X(t) with respect to
the (2) one can obtain a system of equations:

d
dt

X = d
dt

W0(t) + . . . +
d
dt

Wk(t)X[k]
0
,

d
dt

X = P0(t) + P1(t)X + P2(t)X[2] + . . . + Pp(t)X[p]

= P0(t) +

P1(t)
(
W0(t) +W1(t)X0 +· · ·+Wk(t)X[k]

0

)
+

P2(t)
(
W0(t) +W1(t)X0 +· · ·+Wk(t)X[k]

0

) [2]
+

· · ·+

Pp(t)
(
W0(t) +W1(t)X0 +· · ·+Wk(t)X[k]

0

) [p]
,

which leads to a new system of ordinary differential equa-

tions with respect to the weight matrices Wk :

d
dt

Wk(t) =
p∑
i=1

Pi(t)
∂X[i]

∂(X[i]
0
)T
, k = 0, 1, 2, . . . . (4)

Since the right-hand sides of the given equations depend

only on Wi , the system can be numerically integrated with

initial condition Wk(0) = 0, k � 1; W1(0) = E during

necessary time interval.

Invariant Preserving
Any numerical computational process leads to distortion

of qualitative properties (e.g. dynamical and kinematical

invariants). These quantities can be evaluated using, for

example, Casimir operators. According to the Lie groups

theory, we can construct invariants using special forms and

use these data for computational process control.

As an example let’s consider Hamiltonian systems that are

very popular in physics problems. The Hamiltonian nature

leads us to preserve of the symplecticity of the mapM(t |t0)

MT (t |t0)J0M(t |t0) = J0 ,

where

J0 =
(
0 E
−E 0

)
and M(t |t0) = ∂ (M(t |t0) ◦ X0) /∂XT

0
.

For truncated map (3) one can apply order-by-order sym-

plectification scheme [?]. This leads to linear algebraic

homogeneous equations for matrix elements Wk = {wk
i j}.

For instance, for two-dimensional state vector X = (x, y)
and second order map

X = W1X0 +W2X[2]
0
=

(
w1
11

w1
12

w1
21

w1
22

) (
x0
y0

)
+

(
w2
11

w2
12

w2
13

w2
21

w2
22

w2
23

) �	

x2
0

x0y0
y2
0

�� ,
the describe above symplectic conditions are:

w1
11w

1
22−w

1
12w

1
21 = 1,

w1
11w

2
22−w

1
21w

2
12 + 2w

1
22w

2
11 − 2w

1
12w

2
21 = 0,

w1
22w

2
12−w

1
12w

2
22 + 2w

1
11w

2
23 − 2w

1
21w

2
13 = 0,

w2
11w

2
23−w

2
13w

2
21 = 0,w

2
12w

2
23 − w2

13w
2
22 = 0.

This means that some of the elements of matrices Wk are

coupled with each other and whatever one computes these

elements the described above condition should be satisfied.

Figure 2: Polynomial neural network for 3rd order matrix

map.

PROPOSED NEURAL NETWORK
Proposed neural network implements mapM : X → Y

using following polynomial transformation

Y = W0 +W1 X +W2 X[2] + . . . +Wk X[k],

whereX,Y ∈ Rn,Wi are weightsmatrices, andX[k]means k-
th Kroneker power of vector X. For instance Fig. 2 presents
neural network representation of mapM up to the third order

of nonlinearities for 2 dimensional state space. In each layer

the input vector X = (x1, x2) is consequently transformed
into X[2] = (x2

1
, x1x2, x22) and X[3] = (x3

1
, x2

1
x2, x1x2

2
, x3

2
)

where weighted sum is applied. The output Y equals to

sum of results from every layers. Note in the figure we

reduce Kroneker powers for decreasing of weights matrices

dimension, for example

X[2] = (x21, x1x2, x2x1, x22) → (x21, x1x2, x22).

The transformationM can be considered as an approxima-

tion of evolution operator of the (1) for predefined initial time
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Figure 3: Lie transform based neural network for circular accelerator representation.

t0 and time interval Δt. This means that with appropriate
weights Wi = Wi(t0,Δt) the evolution of initial state vector
X0 = X(t0) during time Δt can be approximately calculated
as Y = X(t0,X0,Δt, ) = M ◦ X0. If the system (1) is time

independent then weights Wi are constant for a predefined

time interval.

IMPLEMENTATION IN TensorFlow
The described above method was implemented on Keras

API with TensorFlow backend. TensorFlow [7] is an open

source software library for high-performance numerical com-

putation. Its flexible architecture allows easy deployment

of computation across a variety of platforms (CPUs, GPUs,

TPUs), and from desktops to clusters of servers to mobile

and edge devices. Keras [8] is a high-level neural networks

API, written in Python and capable of running on top of

TensorFlow, CNTK, or Theano.

The described above mapM was implemented as user-

defined Layer in Keras. This allows building neural networks

with Lie transform based architecture and utilize optimiza-

tion and computational techniques that are already imple-

mented in TensorFlow.

Note that given technique allows both building maps for

an arbitrary system of nonlinear differential equations, and

solve identification problems in case of unknown equations.

CONCLUSION
The proposed technique allows building a map for each el-

ement in an accelerator.Combining such maps consequently

one can obtain a polynomial neural network representation

of whole accelerator ring (see Fig. 3).

The proposed Lie transform based mapping approach

was used, for example, for nonlinear dynamics investigation

of spin-orbit dynamics simulation in EDM search project

(see for example [3]). The articles [4–6] describe problem

formulation and simulation results that are achieved with

the application of the matrix Lie maps for simulation of the

systems of nonlinear differential equations in accelerated

physics.

The described above method are implemented in Keras

Tensorflow using Python. The code can be found at GitHub

repository https://github.com/andiva/DeepLieNet.
Directory core consists of both Keras layer that implements

matrix Lie transform up to the necessary order of nonlinear-

ity, and algorithm for matrix Lie map estimation based on a

predefined system of differential equations. Directory demo

contains realizations of demo examples, like simple FODO

structure modeling, as well as the application of described

techniques in other areas like retail and biochemistry.
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