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Abstract

Correctly and rapidly simulating the steady-state inte-

raction between particle beams and electromagnetic fields is

crucial to the design and optimization of accelerator and radi-

ofrequency (RF) source components. Iteratively solving for

the self-consistent interaction between particles and fields

can prove challenging and highly susceptible to numerical

noise and mesh induced instabilities. We present herein two

new approaches to solving the self-consistent trajectories of

particles in the presence of external and self fields. The first

method reformulates the integrated self field contribution as

a path integral. The second method uses a hybrid Eulerian

framework and produces an interpolated continuous current

density, resulting in 1-2 orders of magnitude fewer particles

required to obtain an accurate solution. We conclude with

benchmarking results which show this method is as accurate

as state of the art PIC solvers, while running 80-120X faster.

INTRODUCTION

With complex geometries and features covering a wide

spatio-temporal range, next-generation electron guns and

RF sources have proven challenging to model accurately.

Existing simulation codes which model the relativistic beam-

wave interaction in these devices are exceedingly time con-

suming (on the order of hours to days) with accuracy subject

to the mesh and macro-particle distribution. These factors

significantly impede the rapid iteration process required for

the design and optimization of new guns and RF sources.

Motivated by these considerations, we have been develo-

ping a new approach to simulate the beam-wave interaction.

While similar to existing methods in that we iteratively solve

for the fields, determine the particle trajectories, and repeat

until the solution converges, our approach differs in several

key respects [1, 2]. The calculation of the source terms (cur-

rent and space charge density) from the particle trajectories

is one such respect. In our frequency domain, Lagrangian

based finite element (FE) formulation these source terms

drive the fields through interaction terms in the Lagrangian,

given by eq. 1. Upon perturbing the system, these terms

result in load vectors in the final FE matrix equation.

Lω,int =

∫

−ρωφ
∗
ω − ρ∗ωφω + ®Aω

®J∗ω + ®Aω
®J∗ωdv (1)

∗ vrielink@stanford.edu

Here, ρω and ®Jω are the Fourier coefficients of ρ and ®J:

ρω =
1

T

∑

a

∫ T

0

ρa(t)e
iωteimφdt (2)

®Jω =
1

T

∑

a

∫ T

0

®Ja(t)e
iωteimφdt (3)

We present two computationally efficient and robust methods

for computing these interaction terms from the macroparticle

trajectories. We have implemented both methods for struc-

tures with azimuthal symmetry of degree m ≥ 0, and have

benchmarked it using several electrostatic test problems.

PATH INTEGRATED LINE CURRENTS

Instead of calculating ρω and ®Jω directly, one approach is

to substitute Eqs. (2) and (3) into the expression for Eq. (1).

Given a a set of macro-particle trajectories, a, we can treat

each trajectory as a discrete line current along the trajectory

path, ®ra:

ρa(t) = qaδ(®r − ®ra(t), ®Ja(t)x = qacβa(t)δ(®r − ®ra(t) (4)

Substituting this into the Lagrangian volume integral, the

delta function can be integrated over the volume, resulting

in only the integral over time. Through a change of variable
dsa
dt
= |βa |, this integral can be rewritten as a path integral

along the macroparticle trajectories, sa:

Lω,int =
2

T
IRe

∑

a

qa

∫

(

φ(sa) + ®A · ®β(sa)
) eiωt(sa )

| ®βa(sa)|
dsa

(5)

In the context of the finite element field solver, this inte-

gral is computed without reference to the mesh but only

with respect to the particle trajectories (the four-potential

is recovered via polynomial interpolation over the domain).

In contrast, particle-in-cell (PIC) methods usually assign

charge density to the mesh nodes based on the position of

point charges within the mesh element before numerically

integrating the contribution over the volume. In applications

where the source terms are localized relative to the mesh,

the path based approach thus offers higher resolution.

However, the majority of applications of interest to the

accelerator community do not require such fidelity but rather

lose accuracy due to the discrete nature of the macroparticles,

which are in fact approximating a continuous distribution. In

conventional particle in cell (PIC) methods, this necessitates

some minimum number of particles simulated per mesh

cell (a general rule of thumb is approximately 10 particles

per cell). Using our line integral method results in a similar
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Figure 1: A 2D cross-section of a parallel disc geometry

with an applied voltage and macroparticle trajectories in

white. The image on the left shows the results with no space

charge while the converged trajectories are on the right.
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Figure 2: The discrete nature of path integral approach:

several macroparticle (MP) trajectories must be calculated

to reasonably approximate a uniform beam. Using the HE

approach, we can obtain the same accuracy with only 2.

requirement on the number of macroparticles and even with a

large number of particles, the discrete nature of the self-field

contribution tends to adversely affect the convergence of the

beam trajectory. The effect is particularly noticeable at the

cathode where the beam is low-energy and most susceptible

to noise in the transverse fields.

To illustrate the issue, we consider a relatively simple

electrostatic problem: a uniform annular beam in a parallel

disc geometry as shown in Fig. 1. The solution for the Ez

field on the cathode is plotted for increasing macroparticle

quantities in Fig. 2. Unsurprisingly, modeling this continu-

ous beam with only 3 particles produces innacurate results

and 50 - 100 macroparticles are required before the solution

converges. The large number of particles required to model

a current distribution that is, in fact, quite simple prompted

the development of a new algorithm where macroparticle

trajectories are not considered as discrete line currents but as

the bounds of a continuous current distribution. The source

terms are then determined on the mesh points within these

bounds via the charge conservation law. This produces a

smooth and physically accurate distribution for use in calcu-

lating the space charge contribution in Eq. (1) without using

any arbitrary mesh-based or heuristic smoothing factor. The

benefit of this approach is clear from the trace labeled “dis-

tributed” in Fig. 2, which was obtained using only 2 particles

instead of the 100 required using the path integral method.
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Figure 3: Calculating the source term from the macroparti-

cle trajectories.

HYBRID EULERIAN APPROACH

We titled this distributed current density technique a hy-

brid Eulerian approach as it combines the simplicity and

computational efficiency of using macroparticles in the parti-

cle tracking phase (a Lagrangian representation of the beam)

with the improved accuracy in the space charge calculation

obtained by modeling the beam as an Eulerian flow field. A

similar technique has been applied in other fields, but to our

knowledge, this is the first time it has been applied in this

context [3].

Starting with the charge conservation law, given by Eq. (6),

one can integrate over the volume and apply the divergence

theorem to produce Eq. (7) at steady state.

∂Jµ

∂xµ
=

∂ρ

∂t
+ ∇ · ®j = 0 (6)

∫

V
∇ · ®jdx =

∫

∂V
®j · n̂ dS = const = I (7)

Assuming laminar particle flow between macroparticles,

the current contained between macroparticle trajectories is

constant. The current density at any mesh point p located

between two trajectories, k, k + 1 can thus be calculated

from Eq. (7). A surface, Ωp,k,k+1, is first determined which

contains p, is bounded by k and k+1, and for which ĵ · n̂ = 1

everywhere. Having done so, we use Eq. (7) as follows to

obtain the approximate current density at p:

Ik,k+1 =

∫

Ωp,k,k+1

®j · n̂ dS = | ®jk,k+1 |AΩp,k,k+1
(8)

⇒ ®jk,k+1 =
Ik,k+1

AΩp,k,k+1

n̂ (9)

An illustration of this concept is provided for a two dimen-

sional example in Fig. 3. In the case where macroparticle

trajectories are crossing, we must consider the contribution

from multiple current regions. This concept is illustrated

for point q in Fig. 3, for which the current density would be
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calculated as:

®jq =
I1

AΩq,0,1

n̂q,0,1 +
I2

AΩq,1,2

n̂q,1,2 (10)

The case of crossed trajectories returns us to, and seemingly

contradicts, the assumption of laminar flow made previously.

While most physical designs of interest do involve laminar

flow, particularly when space charge is accounted for, the

algorithm handles non-laminar beams as well. The assump-

tion on laminar flow need only be valid locally, between

trajectories, even if globally the solution is non-laminar. In

the limit of a sufficient number of macroparticle trajecto-

ries, this local condition is adequately approximated. The

number of macroparticle trajectories required will depend

on how non-laminar the flow is but in the worst case should

be equivalent to the number of particles required in a PIC

code, and generally tends to be 1 - 2 orders of magnitude

less. Figure 4 illustrates this concept as applied to an elec-

trostatic gun design with an overfocused beam. The solution

converges using 5-10 particles while a 2D PIC code would

require at least 100-1000 particles before converging. By

Figure 4: Particle trajectories through an overfocused elec-

tron gun demonstrating highly non-laminar flow. While 3

macroparticles are insufficient to capture the beam dynamics,

after 10 macroparticles the solution has converged.

requiring only 10 particles instead of 500, the HE code takes

only 0.25s compared to 33.8s in COMSOL a commercially

available solver which can handle azimuthally symmetric

problems. In addition to the qualitative comparison made

for the electron gun in Fig. 5, a comparison was made with

COMSOL for the annular beam and parallel plate problem

depicted in Fig. 1. Comparing the results after each iteration

of the field solver and particle tracker, Fig. 6 demonstrates

that the HE method converges as effectively as state of the art

PIC codes while taking considerably less time to compute.

For this problem, the PIC solution took on average 7.8s per

iteration, while on the same machine and for a similar mesh,

the field solver using the Hybrid-Euler method required only

0.1s. This represents a speed-up in solution time of 78X for

the laminar beam and 116X for the non-laminar beam.

CONCLUSION

We have developed two different approaches to computing

the self-field contributions to the self-consistent beam-wave

interaction. The path integral approach could be beneficial

Figure 5: The converged particle trajectories using the HE

method compared with a solution from COMSOL. The tra-

jectories solved in COMSOL (in white) agree with those

obtained using the HE method, shown in black. The inset

shows the solution without space charge, demonstrating the

initial highly non-laminar flow.
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Figure 6: Convergence of the electrostatic potential with

iteration number for the problem illustrated in Fig. 1. The

mesh resultion was similiar for both, consisting of 6282

elements for the COMSOL mode and 6109 elements for

the HE based solver. 200 particles were required in the

COMSOL model while the HE solver used 2.

in problems where the particle distribution of interest is finer

than the mesh resolution but it is susceptible to noise in the

solution and requires a large number of macroparticles to

approximate continuous distributions. As such, the Hybrid

Eulerian method was developed which interpolates the cur-

rent density by applying the charge conservation law and

assuming laminar flow locally between trajectories. Even

in the cases where this assumption is only approximated

the results are still highly accurate, as demonstrated for the

electrostatic gun design. The HE solution converged with

only 10 macroparticle trajectories instead of 500, as required

in a conventional PIC solver. This resulted in the HE method

running 80X - 120X faster than the state of the art PIC code

we benchmarked against while maintaining similar solution

accuracy.
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